Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37886566

ABSTRACT

One of the main goals of human genetics is to understand the connections between genomic variation and the predisposition to develop a complex disorder. These disease-variant associations are usually studied in a single independent manner, disregarding the possible effect derived from the interaction between genomic variants. In particular, in a background of complex diseases, these interactions can be directly linked to the disorder and may play an important role in disease development. Although their study has been suggested to help to complete the understanding of the genetic bases of complex diseases, this still represents a big challenge due to large computing demands. Here, we have taken advantage of High-Performance Computing technologies to tackle this problem using a combination of machine learning methods and statistical approaches. As a result, we have created a containerized framework that uses Multifactor Dimensionality Reduction to detect pairs of variants associated with Type 2 Diabetes (T2D). This methodology has been tested in the Northwestern University NUgene project cohort using a dataset of 1,883,192 variant pairs with a certain degree of association with T2D. Out of the pairs studied, we have identified 104 significant pairs, two of which exhibit a potential functional relationship with T2D.

3.
Sci Rep ; 12(1): 3244, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228601

ABSTRACT

For many years, a major question in cancer genomics has been the identification of those variations that can have a functional role in cancer, and distinguish from the majority of genomic changes that have no functional consequences. This is particularly challenging when considering complex chromosomal rearrangements, often composed of multiple DNA breaks, resulting in difficulties in classifying and interpreting them functionally. Despite recent efforts towards classifying structural variants (SVs), more robust statistical frames are needed to better classify these variants and isolate those that derive from specific molecular mechanisms. We present a new statistical approach to analyze SVs patterns from 2392 tumor samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium and identify significant recurrence, which can inform relevant mechanisms involved in the biology of tumors. The method is based on recursive KDE clustering of 152,926 SVs, randomization methods, graph mining techniques and statistical measures. The proposed methodology was able not only to identify complex patterns across different cancer types but also to prove them as not random occurrences. Furthermore, a new class of pattern that was not previously described has been identified.


Subject(s)
Genomics , Neoplasms , Cluster Analysis , Genome, Human , Humans , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...