Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biosyst ; 12(9): 2700-12, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27425826

ABSTRACT

Knots in proteins have been proposed to resist proteasomal degradation. Ample evidence associates proteasomal degradation with neurodegeneration. One interesting possibility is that indeed knotted conformers stall this machinery leading to toxicity. However, although the proteasome is known to unfold mechanically its substrates, at present there are no experimental methods to emulate this particular traction geometry. Here, we consider several dynamical models of the proteasome in which the complex is represented by an effective potential with an added pulling force. This force is meant to induce the translocation of a protein or a polypeptide into the catalytic chamber. The force is either constant or applied periodically. The translocated proteins are modelled in a coarse-grained fashion. We do comparative analysis of several knotted globular proteins and the transiently knotted polyglutamine tracts of length 60 alone and fused in exon 1 of the huntingtin protein. Huntingtin is associated with Huntington's disease, a well-known genetically determined neurodegenerative disease. We show that the presence of a knot hinders and sometimes even jams translocation. We demonstrate that the probability to do so depends on the protein, the model of the proteasome, the magnitude of the pulling force, and the choice of the pulled terminus. In any case, the net effect would be a hindrance in the proteasomal degradation process in the cell. This would then yield toxicity via two different mechanisms: one through toxic monomers compromising degradation and another by the formation of toxic oligomers. Our work paves the way for the mechanistic investigation of the mechanical unfolding of knotted structures by the proteasome and its relation to toxicity and disease.


Subject(s)
Models, Molecular , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Unfolding , Algorithms , Computer Simulation , Neurotoxins/chemistry , Neurotoxins/metabolism , Protein Conformation , Protein Folding , Protein Stability , Protein Transport , Proteins/chemistry , Proteins/metabolism
2.
PLoS Comput Biol ; 11(10): e1004541, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26495838

ABSTRACT

Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , Protein Folding
3.
J Chem Phys ; 143(24): 243105, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723590

ABSTRACT

Contact map selection is a crucial step in structure-based molecular dynamics modelling of proteins. The map can be determined in many different ways. We focus on the methods in which residues are represented as clusters of effective spheres. One contact map, denoted as overlap (OV), is based on the overlap of such spheres. Another contact map, named Contacts of Structural Units (CSU), involves the geometry in a different way and, in addition, brings chemical considerations into account. We develop a variant of the CSU approach in which we also incorporate Coulombic effects such as formation of the ionic bridges and destabilization of possible links through repulsion. In this way, the most essential and well defined contacts are identified. The resulting residue-residue contact map, dubbed repulsive CSU (rCSU), is more sound in its physico-chemical justification than CSU. It also provides a clear prescription for validity of an inter-residual contact: the number of attractive atomic contacts should be larger than the number of repulsive ones - a feature that is not present in CSU. However, both of these maps do not correlate well with the experimental data on protein stretching. Thus, we propose to use rCSU together with the OV map. We find that the combined map, denoted as OV+rCSU, performs better than OV. In most situations, OV and OV+rCSU yield comparable folding properties but for some proteins rCSU provides contacts which improve folding in a substantial way. We discuss the likely residue-specificity of the rCSU contacts. Finally, we make comparisons to the recently proposed shadow contact map, which is derived from different principles.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Protein Conformation , Protein Folding
4.
Proteins ; 82(5): 717-26, 2014 May.
Article in English | MEDLINE | ID: mdl-24123195

ABSTRACT

We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single-molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single-molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force-extension patterns of the guest protein. We study examples of such systems within a coarse-grained structure-based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force-displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single-molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure.


Subject(s)
Models, Molecular , Nanostructures/chemistry , Proteins/chemistry , Biomechanical Phenomena , Cystine/chemistry , Protein Structure, Tertiary
5.
PLoS Biol ; 10(5): e1001335, 2012.
Article in English | MEDLINE | ID: mdl-22666178

ABSTRACT

Amyloidogenic neurodegenerative diseases are incurable conditions with high social impact that are typically caused by specific, largely disordered proteins. However, the underlying molecular mechanism remains elusive to established techniques. A favored hypothesis postulates that a critical conformational change in the monomer (an ideal therapeutic target) in these "neurotoxic proteins" triggers the pathogenic cascade. We use force spectroscopy and a novel methodology for unequivocal single-molecule identification to demonstrate a rich conformational polymorphism in the monomer of four representative neurotoxic proteins. This polymorphism strongly correlates with amyloidogenesis and neurotoxicity: it is absent in a fibrillization-incompetent mutant, favored by familial-disease mutations and diminished by a surprisingly promiscuous inhibitor of the critical monomeric ß-conformational change, neurotoxicity, and neurodegeneration. Hence, we postulate that specific mechanostable conformers are the cause of these diseases, representing important new early-diagnostic and therapeutic targets. The demonstrated ability to inhibit the conformational heterogeneity of these proteins by a single pharmacological agent reveals common features in the monomer and suggests a common pathway to diagnose, prevent, halt, or reverse multiple neurodegenerative diseases.


Subject(s)
Amyloidogenic Proteins/chemistry , Neurodegenerative Diseases/pathology , Neurotoxins/chemistry , Protein Engineering/methods , Amino Acid Sequence , Animals , Biomechanical Phenomena , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cloning, Molecular , Humans , Molecular Sequence Data , Nanotechnology , Nephelometry and Turbidimetry , Neurodegenerative Diseases/genetics , Neurotoxins/genetics , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Plasmids/chemistry , Plasmids/genetics , Polyproteins/chemistry , Protein Stability , Protein Structure, Secondary , Protein Unfolding , Rats , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Spectrum Analysis/methods , Thermodynamics , Vesicle-Associated Membrane Protein 2/chemistry , Vesicle-Associated Membrane Protein 2/genetics , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
6.
Curr Opin Struct Biol ; 20(1): 63-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20138503

ABSTRACT

Single molecule manipulation techniques combined with molecular dynamics simulations and protein engineering have enabled, during the last decade, the mechanical properties of proteins to be studied directly, thereby giving birth to the field of protein nanomechanics. Recent data obtained from such techniques have helped gain insight into the structural bases of protein resistance against forced unfolding, as well as revealing structural motifs involved in mechanical stability. Also, important technical developments have provided new perspectives into protein folding. Eventually, new and exciting data have shown that mechanical properties are key factors in cell signaling and pathologies, and have been used to rationally tune these properties in a variety of proteins.


Subject(s)
Proteins , Biomechanical Phenomena , Humans , Protein Folding , Protein Stability , Proteins/chemistry , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...