Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 279: 102145, 2020 May.
Article in English | MEDLINE | ID: mdl-32229329

ABSTRACT

Saponins are amphiphilic glycosidic secondary metabolites produced by numerous plants. So far only few of them have been thoroughly analyzed and even less have found industrial applications as biosurfactants. In this contribution we screen 45 plants from different families, reported to be rich in saponins, for their surface activity and foaming properties. For this purpose, the room-temperature aqueous extracts (macerates) from the alleged saponin-rich plant organs were prepared and spray-dried under the same conditions, in presence of sodium benzoate and potassium sorbate as preservatives and drying aids. For 15 selected plants, the extraction was also performed using hot water (decoction for 15 min) but high temperature in most cases deteriorated surface activity of the extracts. To our knowledge, for most of the extracts this is the first quantitative report on their surface activity. Among the tested plants, only 3 showed the ability to reduce surface tension of their solutions by more than 20 mN/m at 1% dry extract mass content. The adsorption layers forming spontaneously on the surface of these extracts showed a broad range of surface dilational rheology responses - from null to very high, with surface dilational elasticity modulus, E' in excess of 100 mN/m for 5 plants. In all cases the surface dilational response was dominated by the elastic contribution, typical for saponins and other biosurfactants. Almost all extracts showed the ability to froth, but only 32 could sustain the foam for more than 1 min (for 11 extracts the foams were stable during at least 10 min). In general, the ability to lower surface tension and to produce adsorbed layers with high surface elasticity did not correlate well with the ability to form and sustain the foam. Based on the overall characteristics, Saponaria officinalis L. (soapwort), Avena sativa L. (oat), Aesculus hippocastanum L. (horse chestnut), Chenopodium quinoa Willd. (quinoa), Vaccaria hispanica (Mill.) Rauschert (cowherb) and Glycine max (L.) Merr. (soybean) are proposed as the best potential sources of saponins for surfactant applications in natural cosmetic and household products.


Subject(s)
Plant Extracts/chemistry , Plants/chemistry , Saponins/chemistry , Adsorption , Animals , Humans , Plant Extracts/metabolism , Plants/metabolism , Saponins/metabolism , Surface Properties
2.
Steroids ; 147: 52-57, 2019 07.
Article in English | MEDLINE | ID: mdl-30458189

ABSTRACT

The study discusses the effect of a quinoa seed coat extract on a cholesterol-based Langmuir monolayer mimicking the intercellular lipid mixture in the skin's outermost layer - stratum corneum. Besides cholesterol (CHOL), the monolayer contains also stearic acid (SA) and ceramide VI (CER), in a molar ratio of 10:14:14. Three quinoa extracts were tested for their surface activity: a) from the whole seed, b) from the dehulled seed, and c) from the seed coat. The latter shows significantly higher ability to reduce surface tension (increase surface pressure) than the others. Its adsorbed layers display also reasonable surface dilational elasticity (storage) modulus, E'. These observations are in line with the literature reports on the high concentrations of triterpenoid glycosidic biosurfactants - saponins, in quinoa seed, especially in its coat. The saponin-rich extract of quinoa seed coat was thus introduced underneath the pre-formed lipid monolayer compressed to surface pressure, Π = 30 mN/m in a Langmuir trough, in order to register the surface pressure response. The increase of both the surface pressure and surface dilational elasticity modulus suggests that saponins, and possibly other surface-active components of the extract, incorporate into the model lipid monolayer, without solubilizing it. This opens new perspectives for the saponin-rich quinoa seed extract as skin penetration-enhancing active components for cosmetics or pharmaceutical purposes.


Subject(s)
Chenopodium quinoa/chemistry , Cholesterol/chemistry , Lipids/chemistry , Plant Extracts/chemistry , Saponins/chemistry , Skin/chemistry , Molecular Conformation , Plant Extracts/isolation & purification , Saponins/isolation & purification , Seeds/chemistry
3.
Biochim Biophys Acta Biomembr ; 1861(3): 556-564, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30579962

ABSTRACT

The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0 = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E', to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E'= 715 mN/m).


Subject(s)
Saponaria/chemistry , Skin, Artificial , Skin/drug effects , Sodium Dodecyl Sulfate/supply & distribution , Surface-Active Agents/isolation & purification , Surface-Active Agents/pharmacology , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Biomimetic Materials/chemistry , Cholesterol/chemistry , Fluorescence , Membrane Lipids/chemistry , Membranes, Artificial , Plant Extracts/pharmacology , Skin/chemistry , Sodium Dodecyl Sulfate/chemistry , Structure-Activity Relationship , Surface-Active Agents/chemistry , Unilamellar Liposomes/chemistry
4.
Colloids Surf B Biointerfaces ; 148: 238-248, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27616064

ABSTRACT

We describe the effect of three synthetic surfactants (anionic - sodium dodecyl sulfate (SDS), cationic - cetyltrimethylammonium bromide (CTAB) and nonionic - Triton X-100 (TX-100)) on surface properties of the type I calf skin collagen at the air/water interface in acidic solutions (pH 1.8). The protein concentration was fixed at 5×10-6molL-1 and the surfactant concentration was varied in the range 5×10-6molL-1-1×10-4molL-1, producing the protein/surfactant mixtures with molar ratios of 1:1, 1:2, 1:5, 1:10 and 1:20. An Axisymmetric Drop Shape Analysis (ADSA) method was used to determine the dynamic surface tension and surface dilatational moduli of the mixed adsorption layers. Two spectroscopic techniques: UV-vis spectroscopy and fluorimetry allowed us to determine the effect of the surfactants on the protein structure. The thermodynamic characteristic of the mixtures was studied using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Modification of the collagen structure by SDS at low surfactant/protein ratios has a positive effect on the mixture's surface activity with only minor deterioration of the rheological properties of the adsorbed layers. The collagen/CTAB mixtures do not show that pronounced improvement in surface activity, while rheological properties are significantly deteriorated. The mixtures with non-ionic TX-100 do not show any synergistic effects in surface activity.


Subject(s)
Collagen Type I/metabolism , Rheology , Surface-Active Agents/chemistry , Air , Calorimetry, Differential Scanning , Spectrophotometry, Ultraviolet , Surface Tension , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...