Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 23(1): 268, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950262

ABSTRACT

Colorectal cancer (CRC) is one of the foremost causes of cancer-related deaths. Lately, a close connection between the course of CRC and the intestinal microbiota has been revealed. Vitamin K2 (VK2) is a bacterially derived compound that plays a crucial role in the human body. Its significant anti-cancer properties may result, inter alia, from a quinone ring possessing a specific chemical structure found in many chemotherapeutics. VK2 can be supplied to our body exogenously, i.e., through dietary supplements or fermented food (e.g., yellow cheese, fermented soybeans -Natto), and endogenously, i.e., through the production of bacteria that constantly colonize the human microbiome of the large intestine.This paper focuses on endogenous K2 synthesized by the most active members of the human gut microbiome. This analysis tested 86 intestinally derived bacterial strains, among which the largest VK2 producers (Lactobacillus, Bifidobacterium, Bacillus) were selected. Moreover, based on the chosen VK2-MK4 homolog, the potential of VK2 penetration into Caco-2 cells in an aqueous environment without the coexistence of fats, pancreatic enzymes, or bile salts has been displayed. The influence of three VK2 homologs: VK2-MK4, VK2-MK7 and VK2-MK9 on apoptosis and necrosis of Caco-2 cells was tested proving the lack of their harmful effects on the tested cells. Moreover, the unique role of long-chain homologs (VK2-MK9 and VK2-MK7) in inhibiting the secretion of pro-inflammatory cytokines such as IL-8 (for Caco-2 tissue) and IL-6 and TNFα (for RAW 264.7) has been documented.

2.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513347

ABSTRACT

A novel electrochemical method for the determination of quinoline yellow (QY) was developed using the renewable amalgam film electrode (Hg(Ag)FE). The sensors used can be characterized by good stability and long lifespan. Irreversible QY reduction peaks were recorded in 0.05 mol L-1 HCl with a potential of about -630 mV. The use of the Hg(Ag)FE electrode with a regulated working surface allowed the QY limit of detection to be as low as 0.48 nmol L-1. The obtained result is the lowest in comparison to other voltammetric methods described in the literature. The effects of parameters such as the size of the working electrode surface, influence of the pH value, accumulation time, and potential were investigated to provide precision and high sensitivity of the performed measurements. This new procedure was applied for the highly sensitive determination of quinoline yellow in different beverages, pre-workout supplements, and throat lozenges. The process of sample preparation was relatively simple. Calculated recoveries (96-107%) suggest that the method can be considered accurate.

3.
Micromachines (Basel) ; 15(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276837

ABSTRACT

This article presents the current state of knowledge regarding electrochemical methods for determining the active substances within drugs that are used in the treatment of type 1 and type 2 diabetes. Electrochemical methods of analysis, due to their sensitivity and easiness, are a great alternative to other, usually more expensive analytical assays. The determination of active substances mentioned in this review is based on oxidation or reduction processes on the surface of the working electrode. A wide variety of working electrodes, often modified with materials such as nanoparticles or conducting polymers, have been used for the highly sensitive analysis of antidiabetic drugs. The presented assays allow us to determine the compounds of interest in various samples, such as pharmaceutical products or different human bodily fluids.

SELECTION OF CITATIONS
SEARCH DETAIL
...