Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 16(2): 207-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34861104

ABSTRACT

Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis. Biomaterials currently used for deep cartilage defects lack appropriate properties for this application. Therefore, we investigated photo-crosslinked gelatin methacryloyl (gelMA) as a candidate for treatment of surface defects. It allows for liquid application, filling of surface defects and forming a protective layer after UV-crosslinking, thereby keeping therapeutic cells in place. gelMA and photo-initiator lithium phenyl-2,4,6-trimethyl-benzoylphosphinate (Li-TPO) concentration were optimized for application as a carrier to create a favorable environment for human articular chondrocytes (hAC). Primary hAC were used in passages 3 and 5, encapsulated into two different gelMA concentrations (7.5 wt% (soft) and 10 wt% (stiff)) and cultivated for 3 weeks with TGF-ß3 (0, 1 and 10 ng/mL). Higher TGF-ß3 concentrations induced spherical cell morphology independent of gelMA stiffness, while low TGF-ß3 concentrations only induced rounded morphology in stiff gelMA. Gene expression did not vary across gel stiffnesses. As a functional model gelMA was loaded with two different cell types (hAC and/or human adipose-derived stem cells [ASC/TERT1]) and applied to human osteochondral osteoarthritic plugs. GelMA attached to the cartilage, smoothened the surface and retained cells in place. Resistance against shear forces was tested using a tribometer, simulating normal human gait and revealing maintained cell viability. In conclusion gelMA is a versatile, biocompatible material with good bonding capabilities to cartilage matrix, allowing sealing and smoothening of superficial cartilage defects while simultaneously delivering therapeutic cells for tissue regeneration.


Subject(s)
Chondrocytes , Tissue Engineering , Cartilage/metabolism , Gelatin/metabolism , Gelatin/pharmacology , Humans , Hydrogels/pharmacology , Methacrylates
2.
Cartilage ; 13(1_suppl): 496S-508S, 2021 12.
Article in English | MEDLINE | ID: mdl-33596661

ABSTRACT

OBJECTIVE: During osteoarthritis progression, cartilage degrades in a manner that influences its biomechanical and biotribological properties, while chondrocytes reduce the synthesis of extracellular matrix components and become apoptotic. This study investigates the effects of inflammation on cartilage under biomechanical stress using biotribological tests. METHODS: Bovine osteochondral grafts from five animals were punched out from the medial condyle and treated with or without pro-inflammatory cytokines (interleukin-1ß [IL-1ß], tumor necrosis factor-α [TNF-α], IL-6) for 2 weeks. After incubation, biotribological tests were performed for 2 hours (alternating 10 minutes test and pause respectively at 39°C, 180 N, 1 Hz, and 2 mm stroke). Before and after testing, the cartilage surface was imaged with a 3-dimensional microscope. During testing, the coefficient of friction (COF) was measured, while gene expression analysis and investigation of metabolic activity of chondrocytes were carried out after testing. Histological sections of the tissue and wear debris from the test fluid were also analyzed. RESULTS: After biotribological tests, surface cracks were found in both treated and untreated osteochondral grafts. In treated grafts, the COF increased, and the proteoglycan content in the cartilage tissue decreased, leading to structural changes. Chondrocytes from treated grafts showed increased expression of genes encoding for degradative enzymes, while cartilage-specific gene expression and metabolic activity exhibited no significant differences between treated and untreated groups. No measurable difference in the wear debris in the test fluid was found. CONCLUSIONS: Treatment of osteochondral grafts with cytokines results in a significantly increased COF, while also leading to significant changes in cartilage proteoglycan content and cartilage matrix compression during biotribological tests.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cattle , Chondrocytes/metabolism , Cytokines/metabolism , Friction , Osteoarthritis/metabolism
3.
J Orthop Res ; 37(3): 583-592, 2019 03.
Article in English | MEDLINE | ID: mdl-30690777

ABSTRACT

Autologous osteochondral transplantation (AOT) utilizing autografts is a widely used technique for the treatment of small-to-medium cartilage defects occurring in knee and ankle joints. The application of viable cartilage and bone ensures proper integration, early weight bearing, as well as restoration of biomechanical and biotribological properties. However, alignment of the autografts onto the defect site remains a pivotal aspect of reinstating the properties of the joint toward successful autograft integration. This is the first study to perform tests with different orientations of osteochondral grafts in a cartilage-on-cartilage test system. The objective was to estimate if there are differences between aligned and 90°-rotated grafts concerning molecular biological and biomechanical parameters. Tissue viability, assessed by XTT assay indicated lower metabolic activity in tested osteochondral grafts (aligned, p = 0.0148 and 90°-rotated, p = 0.0760) in favor of a higher anabolic gene expression (aligned, p = 0.0030 and 90°-rotated, 0.0027). Tissue structure was evaluated by Safranin O histology and microscopic images of the surface. Aligned and 90°-rotated grafts revealed no apparent differences between proteoglycan content or cracks and fissures on the cartilage surface. Test medium analyzed after tribological tests for their sulfated glycosaminoglycan content revealed no differences (p = 0.3282). During the tests, both the friction coefficient and the relative displacement between the two cartilage surfaces were measured, with no significant difference in both parameters (COF, p = 0.2232 and relative displacement, p = 0.3185). From the methods we deployed, this study can infer that there are no differences between aligned and 90°-rotated osteochondral grafts after tribological tests in the used ex vivo tissue model. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.


Subject(s)
Cartilage/transplantation , Chondrocytes/metabolism , Tissue Transplantation/methods , Animals , Bone Transplantation , Cattle , Friction , Glycosaminoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...