Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(1): 362-376, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33231422

ABSTRACT

Silver nanowire (AgNW) networks show excellent optical, electrical, and mechanical properties, which make them ideal candidates for transparent electrodes in flexible and stretchable devices. Various coating strategies and testing setups have been developed to further improve their stretchability and to evaluate their performance. Still, a comprehensive microscopic understanding of the relationship between mechanical and electrical failure is missing. In this work, the fundamental deformation modes of five-fold twinned AgNWs in anisotropic networks are studied by large-scale SEM straining tests that are directly correlated with corresponding changes in the resistance. A pronounced effect of the network anisotropy on the electrical performance is observed, which manifests itself in a one order of magnitude lower increase in resistance for networks strained perpendicular to the preferred wire orientation. Using a scale-bridging microscopy approach spanning from NW networks to single NWs to atomic-scale defects, we were able to identify three fundamental deformation modes of NWs, which together can explain this behavior: (i) correlated tensile fracture of NWs, (ii) kink formation due to compression of NWs in transverse direction, and (iii) NW bending caused by the interaction of NWs in the strained network. A key observation is the extreme deformability of AgNWs in compression. Considering HRTEM and MD simulations, this behavior can be attributed to specific defect processes in the five-fold twinned NW structure leading to the formation of NW kinks with grain boundaries combined with V-shaped surface reconstructions, both counteracting NW fracture. The detailed insights from this microscopic study can further improve fabrication and design strategies for transparent NW network electrodes.

2.
Nanotechnology ; 28(38): 385701, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28691926

ABSTRACT

This article focuses on the microscopic mechanism of thermally induced nanoweld formation between silver nanowires (AgNWs) which is a key process for improving electrical conductivity in NW networks employed for transparent electrodes. Focused ion beam sectioning and transmission electron microscopy were applied in order to elucidate the atomic structure of a welded NW including measurement of the wetting contact angle and characterization of defect structure with atomic accuracy, which provides fundamental information on the welding mechanism. Crystal lattice strain, obtained by direct evaluation of atomic column displacements in high resolution scanning transmission electron microscopy images, was shown to be non-uniform among the five twin segments of the AgNW pentagonal structure. It was found that the pentagonal cross-sectional morphology of AgNWs has a dominant effect on the formation of nanowelds by controlling initial wetting as well as diffusion of Ag atoms between the NWs. Due to complete solid-state wetting, at an angle of ∼4.8°, the welding process starts with homoepitaxial nucleation of an initial Ag layer on (100) surface facets, considered to have an infinitely large radius of curvature. However, the strong driving force for this process due to the Gibbs-Thomson effect, requires the NW contact to occur through the corner of the pentagonal cross-section of the second NW providing a small radius of curvature. After the initial layer is formed, the welded zone continues to grow and extends out epitaxially to the neighboring twin segments.

3.
Nano Lett ; 16(6): 3524-32, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27124605

ABSTRACT

The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

SELECTION OF CITATIONS
SEARCH DETAIL
...