Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20431, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443326

ABSTRACT

Surface cleaning of the working electrode has a key role in improved electrochemical and physicochemical properties of the biosensors. Herein, chemical oxidation in piranha, chemical cleaning in potassium hydroxide-hydrogen peroxide, combined (electro-) chemical alkaline treatment, and potential cycling in sulfuric acid were applied to gold finish electrode surfaces deposited onto three different substrates; low temperature co-fired ceramics (LTCC), polyethylene naphthalate (PEN), and polyimide (PI), using three different deposition technologies; screen printing, inkjet printing, and electroplating (printed circuit board technology, PCB) accordingly. The effects of the (electro-) chemical treatments on the gold content and electrochemical responses of LTCC, PEN, and PCB applicable for aptamer-based sensors are discussed. In order to assess the gold surface and to compare the efficiency of the respective cleaning procedures; cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed. LTCC sensors electrochemically cycled in sulfuric acid resulted in the most gold content on the electrode surface, the lowest peak potential difference, and the highest charge transfer ability. While, for PEN, the highest elemental gold and the lowest peak-to-peak separation were achieved by a combined (electro-) chemical alkaline treatment. Gold content and electrochemical characteristics on the PCB surface with extremely thin gold layer could be slightly optimized with the chemical cleaning in KOH + H2O2. The proposed cleaning procedures might be generally applied to various kinds of Au electrodes fabricated with the same conditions comparable with those are introduced in this study.


Subject(s)
Ceramics , Hydrogen Peroxide , Electrodes , Gold
2.
Nanoscale ; 14(28): 10143-10154, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35796182

ABSTRACT

Controlling charge carrier concentrations remains a major challenge in the application of quasi-two-dimensional materials. A promising approach is the modulation doping of transport channels via charge transfer from neighboring layers in stacked heterostructures. Ferecrystals, which are metastable layered structures created from artificial elemental precursors, are a perfect model system to investigate modulation doping, as they offer unparalleled freedom in the combination of different constituents and variable layering sequences. In this work, differently stacked combinations of rock-salt structured PbSe and VSe2 were investigated using X-ray photoelectron spectroscopy. The PbSe layers act as electron donors in all heterostructures, with about 0.1 to 0.3 donated electrons per VSe2 unit cell. While they initially retain their inherent semiconducting behavior, they themselves become metallic when combined with a larger number of VSe2 layers, as evidenced by a change of the XPS core level lineshape. Additional analysis of the valence band structure was performed for selected stacking orders at different sample temperatures to investigate a predicted charge density wave (CDW) transition. While there appear to be hints of a gap opening, the data so far is inconclusive and the application of spatially resolved techniques such as scanning tunneling microscopy is encouraged for further studies.

3.
Inorg Chem ; 59(6): 3353-3366, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31940184

ABSTRACT

The simultaneous hydrolysis of Bi(NO3)3·5H2O and Ce(NO3)3·6H2O results in the formation of novel heterometallic bismuth oxido clusters with the general formula [Bi38O45(NO3)24(DMSO)28+δ]:Ce (DMSO = dimethyl sulfoxide; cerium content <1.50%), which is demonstrated by single-crystal X-ray diffraction analysis. The incorporation of cerium into the cluster core is a result of the interplay of hydrolysis and condensation of the metal nitrates in the presence of oxygen. Diffuse-reflectance UV-vis and X-ray photoelectron spectroscopy reveal the presence of CeIV in the final bismuth oxido clusters as a result of oxidation of the cerium source. The cerium atoms are statistically distributed mainly on the bismuth atom positions of the central [Bi6O9] motif of the [Bi38O45] cluster core. Hydrolysis and subsequent annealing of the bismuth oxido clusters in the temperature range of 300-400 °C provides ß-Bi2O3:Ce samples with slightly lowered band gaps of approximately 2.3 eV compared to the undoped ß-Bi2O3 (approximately 2.4 eV). The sintering behavior of ß-Bi2O3 is significantly affected by the cerium dopant. Finally, differences in the efficiency of the as-prepared ß-Bi2O3:Ce and undoped ß-Bi2O3 samples in the photocatalytic decomposition of the biocide triclosan in an aqueous solution under visible-light irradiation are demonstrated.

4.
J Phys Condens Matter ; 30(5): 055001, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29244027

ABSTRACT

Rotationally disordered, layered (PbSe)[Formula: see text](NbSe2)2 and (SnSe)[Formula: see text](NbSe2)2 ferecrystal heterostructures, consisting of stacked two-dimensional bilayers of either PbSe or SnSe alternating with two planes of NbSe2, were synthesized from modulated elemental reactants. The electronic structure of these ternary systems was investigated using x-ray photoelectron spectroscopy and compared to the binary bulk compounds PbSe, SnSe and NbSe2. The Pb and Sn core level spectra show a significant shift towards lower binding energies and the peak shape becomes asymmetric in the ferecrystals, while the electronic structure of the NbSe2 layers does not change compared to the bulk. This is interpreted in terms of an interlayer interaction in the form of a charge transfer of electrons from PbSe or SnSe into the NbSe2 layers, which is supported by valence band spectra and is consistent with prior results from transport measurements.

5.
ACS Nano ; 10(10): 9489-9499, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27673390

ABSTRACT

(BiSe)1+δ(NbSe2)n heterostructures with n = 1-4 were synthesized using modulated elemental reactants. The BiSe bilayer structure changed from a rectangular basal plane with n = 1 to a square basal plane for n = 2-4. The BiSe in-plane structure was also influenced by small changes in the structure of the precursor, without significantly changing the out-of-plane diffraction pattern or value of the misfit parameter, δ. Density functional theory calculations on isolated BiSe bilayers showed that its lattice is very flexible, which may explain its readiness to adjust shape and size depending on the environment. Correlated with the changes in the BiSe basal plane structure, analysis of scanning transmission electron microscope images revealed that the occurrence of antiphase boundaries, found throughout the n = 1 compound, is dramatically reduced for the n = 2-4 compounds. X-ray photoelectron spectroscopy measurements showed that the Bi 5d3/2, 5d5/2 doublet peaks narrowed toward higher binding energies as n increased from 1 to 2, also consistent with a reduction in the number of antiphase boundaries. Temperature-dependent electrical resistivity and Hall coefficient measurements of nominally stoichiometric samples in conjunction with structural refinements and XPS data suggest a constant amount of interlayer charge transfer independent of n. Constant interlayer charge transfer is surprising given the changes in the BiSe in-plane structure. The structural flexibility of the BiSe layer may be useful in designing multiple constituent heterostructures as an interlayer between structurally dissimilar constituents.

SELECTION OF CITATIONS
SEARCH DETAIL
...