Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
2.
Carbohydr Polym ; 328: 121704, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220340

ABSTRACT

Fructans have long been known with their role in protecting organisms against various stress factors due to their ability to induce controlled dehydration and support membrane stability. Considering the vital importance of such features in cryo-technologies, this study aimed to explore the cryoprotective efficacy of fructans in mammalian cell systems where structurally different fructan polymers were examined on in vitro cell models derived from organs such as the liver, frequently used in transplantation, osteoblast, and cord cells, commonly employed in cell banking, as well as human seminal fluids that are of vital importance in assisted reproductive technology. To gain insights into the fructan/membrane interplay, structural differences were linked to rheological properties as well as to lipid membrane interactions where both fluorescein leakage from unilamellar liposomes and membrane integrity of osteoblast cells were monitored. High survival rates obtained with human endothelial, osteoblast and liver cells for up to two months clearly showed that fructans could be considered as effective non-permeating cryoprotectants, especially for extended periods of cryopreservation. In trials with human seminal fluid, short chained levan in combination with human serum albumin and glycerol proved very effective in preserving semen samples across multiple patients without any morphological abnormalities.


Subject(s)
Cryoprotective Agents , Fructans , Animals , Humans , Fructans/pharmacology , Fructans/chemistry , Cryoprotective Agents/pharmacology , Cryopreservation , Glycerol , Mammals
3.
Article in English | MEDLINE | ID: mdl-37399785

ABSTRACT

Pesticides enter the environment through runoff and leaching and this raises public concern about effects on non-target organisms. Imidacloprid (IMI) a synthetic pesticide, has an unstable half-life, metabolized in minutes to weeks in the water. To evaluate the effects of IMI on the zebrafish liver, we conducted proteomic, molecular and biochemical analysis in a multi-level approach, to highlight the complementary features regarding the results of each method. Adult zebrafish were exposed to 60 mg/L IMI for 48 h and were evaluated using nLC-MS/MS for proteins, q-PCR analysis for expression of cat, gpx, pxr, ache, along with CAT and AChE enzyme activities and GSH and MDA assays. Based on proteomics, the regulation of antioxidant and immune responses, as well as gene transcription were significant processes affected. Apoptosis and ER stress pathways were upregulated and there was a down-regulation of cat and gpx genes. There was also elevated CAT activity and GSH and decreased MDA. Additionally, elevated AChE activity and up regulation of ache expression was observed. The multi-approach results included regulators of antioxidant, xenobiotic response and neuro-protective related proteins (genes and enzymes), which overall reflected harmful effects of IMI. Consequently, this study highlights the effects of IMI on zebrafish liver and reveals new potential biomarkers. In this respect, evaluated outcomes reveal the complementary features emphasizing the importance of studying chemicals using several methods. Our study provides deeper insights for future work in ecotoxicological studies regarding IMI and contribute to existing toxicity literature.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Pesticides/toxicity , Pesticides/analysis , Pesticides/metabolism , Antioxidants/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Tandem Mass Spectrometry , Proteomics , Neonicotinoids , Nitro Compounds/toxicity , Liver/metabolism , Polymerase Chain Reaction , Oxidative Stress , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
4.
Int J Biol Macromol ; 240: 124418, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37080400

ABSTRACT

Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the ß-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.


Subject(s)
Cosmeceuticals , Cosmetics , Halomonas , Humans , Cosmeceuticals/pharmacology , Cosmeceuticals/metabolism , Halomonas/metabolism , Skin , Cosmetics/pharmacology , Cosmetics/metabolism , Fructans/pharmacology , Fructans/metabolism
5.
Front Microbiol ; 11: 79, 2020.
Article in English | MEDLINE | ID: mdl-32117114

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes high morbidity and mortality rates due to its biofilm form. Biofilm formation is regulated via quorum sensing (QS) mechanism and provides up to 1000 times more resistance against conventional antibiotics. QS related genes are expressed according to bacterial population density via signal molecules. QS inhibitors (QSIs) from natural sources are widely studied evaluating various extracts from extreme environments. It is suggested that extremely halophilic Archaea may also produce QSI compounds. For this purpose, we tested QS inhibitory potentials of ethyl acetate extracts from cell free supernatants and cells of Natrinema versiforme against QS and biofilm formation of P. aeruginosa. To observe QS inhibition, all extracts were tested on P. aeruginosa lasB-gfp, rhlA-gfp, and pqsA-gfp biosensor strains and biofilm inhibition was studied using P. aeruginosa PAO1. According to our results, QS inhibition ratios of cell free supernatant extract (CFSE) were higher than cell extract (CE) on las system, whereas CE was more effective on rhl system. In addition, anti-biofilm effect of CFSE was higher than CE. Structural analysis revealed that the most abundant compound in the extracts was trans 4-(2-carboxy-vinyl) benzoic acid.

6.
J Ethnopharmacol ; 235: 293-300, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30763694

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. (Hypericaceae) has been used as a traditional therapeutic for skin wounds, burns, cuts and stomach ailments including stomach ache, ulcers for a long time in many societies. Although many studies about its antibacterial properties can be found, there is a lack of studies about its quorum sensing inhibition properties, which effects bacterial vulnerability directly, on Pseudomonas aeruginosa. AIM OF THE STUDY: Evaluation of anti-quorum sensing (anti-QS) and anti-biofilm activity of ethanol, methanol, acetone and ultra-sonicated extracts of Hypericum perforatum L. (HP) which is a well-known wound healer, against P. aeruginosa. MATERIALS AND METHODS: Aerial parts of HP were extracted with ethanol, methanol and acetone. In addition, separate extractions with ultrasonication were carried out with same solvents. Anti-QS activity tests with different doses of HP extracts were performed by employing biomonitor strains, of which the promoter of QS regulating and green fluorescent protein (GFP) genes were fusioned. For anti-biofilm activity, HP extracts were applied to wild type PAO1 strains and biofilm inhibition was quantified via crystal violet staining method. RESULTS: HP's ethanol, methanol and acetone extracts (250 µg/ml doses) inhibited LasIR signalling pathway up to 65.43%, 59.60%, 55.95% and same solvent extracts obtained with ultrasonication inhibited 71.33%, 64.47%, 57.35% respectively. Moreover, inhibition rates of RhlIR pathway were 28.80%, 50.83%, 45.84% for ethanol, methanol, acetone extracts (250 µg/ml doses) and 51.43%, 57.41%, 50.02% for ultrasonication extracts (250 µg/ml doses), compared to untreated controls. In the experiments, ethanol, methanol, acetone and ultra-sonicated extracts of HP did not inhibit biofilm formation. CONCLUSIONS: This study shows that HP plant is capable for blocking of las and rhl QS systems of P. aeruginosa. However, it was observed that ethanol, methanol and acetone extract of the plant samples did not show anti-biofilm activity against P. aeruginosa. This led us to thinking that biofilm formation was caused via another pathway such as IQS or PQS. Further studies with isolated active compounds of HP might give a better understanding of the effects on biofilm formation of P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hypericum/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Biofilms/drug effects , Dose-Response Relationship, Drug , Medicine, Traditional/methods , Microbial Sensitivity Tests , Plant Components, Aerial , Plant Extracts/administration & dosage , Quorum Sensing/drug effects
7.
Microb Ecol ; 74(2): 466-473, 2017 08.
Article in English | MEDLINE | ID: mdl-28255686

ABSTRACT

Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Virulence/drug effects , Zeaxanthins/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/pathogenicity
8.
World J Microbiol Biotechnol ; 32(9): 150, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27465850

ABSTRACT

Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.


Subject(s)
Hydroxybenzoates/pharmacology , Lichens/chemistry , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , Plant Extracts/chemistry , Pseudomonas aeruginosa/genetics , Secondary Metabolism , Virulence Factors/genetics
9.
Curr Microbiol ; 73(2): 228-35, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27146505

ABSTRACT

Chlorine is deployed worldwide to clean waters and prevent water-originated illnesses. However, chlorine has a limited disinfection capacity against biofilms. Microorganisms form biofilms to protect themselves from biological threats such as disinfectant chemicals. Pseudomonas aeruginosa is an opportunistic pathogen and its biofilm form attaches to surfaces, living buried into exopolysaccharides, can be present in all watery environments including tap water and drinking water. This research aimed to study the biofilm trigger mechanism of the opportunistic pathogen P. aeruginosa PAO1 strain, which is known to form biofilm in water supply systems and human body, under chlorine stress levels. In addition to biofilm staining, certain genes that are relevant to the stress condition were selected for gene expression analysis. The bacteria cultures were grown under chlorine stress with concentrations of 0.5, 0.7 and 1 mg/l. Six gene regions were determined related to biofilm and stress response: rpoS, bifA, migA, katB, soxR, and algC. Biofilm formation was analyzed by basic fuchsin staining, and gene expressions were quantified by quantitative real-time PCR. According to the results, highest biofilm production was observed in P. aeruginosa PAO1 wild strain under no stress conditions. Higher biofilm amounts were observed for bacteria under 0.5 and 0.7 mg/l chlorine stress compared to 1 mg/l chlorine stress.


Subject(s)
Bacterial Proteins/genetics , Biofilms/drug effects , Chlorine/pharmacology , Disinfectants/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/physiology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...