Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069283

ABSTRACT

The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young's modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading.

2.
Adv Mater ; 23(22-23): 2663-8, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21823248

ABSTRACT

Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing multicomponent ultrafine-grained sheet materials with tailored properties.


Subject(s)
Nanostructures/chemistry , Alloys/chemistry , Aluminum Oxide/chemistry , Nanostructures/ultrastructure , Surface Properties
3.
Acta Biomater ; 6(11): 4345-51, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20621631

ABSTRACT

Pyrolytic conversion causes severe changes in the microstructure of the wood cell wall. Pine wood pyrolysed up to 325 °C was investigated by transmission electron microscopy, atomic force microscopy and nanoindentation measurements to monitor changes in structure and mechanical properties. Latewood cell walls were tested in the axial, radial and tangential directions at different temperatures of pyrolysis. A strong anisotropy of elastic properties in the native cell wall was found. Loss of the hierarchical structure of the cell wall due to pyrolysis resulted in elastic isotropy at 300 °C. The development of the mechanical properties with increasing temperature can be explained by alterations in the structure and it was found that the elastic properties were clearly related to length and orientation of the microfibrils.


Subject(s)
Cell Wall/ultrastructure , Pinus/cytology , Pinus/physiology , Temperature , Wood/cytology , Wood/ultrastructure , Biomechanical Phenomena/physiology , Elastic Modulus/physiology , Hardness/physiology , Microscopy, Atomic Force , Pinus/ultrastructure
4.
Arthritis Rheum ; 58(2): 475-88, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18240212

ABSTRACT

OBJECTIVE: To investigate the potential of transgene-activated periosteal cells for permanently resurfacing large partial-thickness cartilage defects. METHODS: In miniature pigs, autologous periosteal cells stimulated ex vivo by bone morphogenetic protein 2 gene transfer, using liposomes or a combination of adeno-associated virus (AAV) and adenovirus (Ad) vectors, were applied on a bioresorbable scaffold to chondral lesions comprising the entire medial half of the patella. The resulting repair tissue was assessed, 6 and 26 weeks after transplantation, by histochemical and immunohistochemical methods. The biomechanical properties of the repair tissue were characterized by nanoindentation measurements. Implants of unstimulated cells and untreated lesions served as controls. RESULTS: All grafts showed satisfactory integration into the preexisting cartilage. Six weeks after transplantation, AAV/Ad-stimulated periosteal cells had adopted a chondrocyte-like phenotype in all layers; the newly formed matrix was rich in proteoglycans and type II collagen, and its contact stiffness was close to that of healthy hyaline cartilage. Unstimulated periosteal cells and cells activated by liposomal gene transfer formed only fibrocartilaginous repair tissue with minor contact stiffness. However, within 6 months following transplantation, the AAV/Ad-stimulated cells in the superficial zone tended to dedifferentiate, as indicated by a switch from type II to type I collagen synthesis and reduced contact stiffness. In deeper zones, these cells retained their chondrocytic phenotype, coinciding with positive staining for type II collagen in the matrix. CONCLUSION: Large partial-thickness cartilage defects can be resurfaced efficiently with hyaline-like cartilage formed by transgene-activated periosteal cells. The long-term stability of the cartilage seems to depend on physicobiochemical factors that are active only in deeper zones of the cartilaginous tissue.


Subject(s)
Cartilage Diseases/therapy , Cell Transplantation/methods , Genetic Therapy/methods , Osteoarthritis/therapy , Periosteum/cytology , Adenoviridae/genetics , Animals , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/genetics , Cartilage Diseases/pathology , Disease Models, Animal , Female , Hyaline Cartilage/pathology , Hyaline Cartilage/physiology , Models, Biological , Osteoarthritis/pathology , Swine , Swine, Miniature , Transforming Growth Factor beta/genetics , Transgenes , Transplantation, Autologous , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...