Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 148-149: 42-50, 2023.
Article in English | MEDLINE | ID: mdl-36670035

ABSTRACT

Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.


Subject(s)
Oomycetes , Oomycetes/genetics , Oomycetes/metabolism , Genomics , Plants , Virulence/genetics
2.
Biomacromolecules ; 23(12): 5297-5311, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36418020

ABSTRACT

Nanocone clusters (NCCs) are new-generation agents of nanoparticle-mediated histotripsy (NMH) recently developed to address the limitations of previously designed nanodroplets (NDs). NCCs can be obtained by simply mixing FDA-approved cyclodextrins (CD) and suitable perfluorocarbons (PFCs), which result in smaller size aggregates, detectable PFC amount, and more stable long-term storage since the obtained powder can be stored and redispersed as needed. Previous experimental and computational studies showed that NCCs consist of an organization of inclusion complexes of CD and PFC around free PFC droplets, and their aggregate behavior depends on the localization of PFC in the cavity and the water solubility of CD derivatives. It has been shown that ß-cyclodextrin (ßCD) and perfluorohexane (PFH) are ideal candidates for NCCs that can be isolated as a powder with high PFC content among various CD and PFC derivatives. This study focuses on the further development of the selected NCC composition to enhance the potential of NMH therapy while also enabling more detailed future experiments in vitro and in vivo. It is aimed to show the bioconjugation potential of NCCs through the example of the most commonly used functionalization methods such as targeting, PEGylation, and fluorescent labeling. For this purpose, ßCD as a building block was monofunctionalized with groups such as azide, alkyne, and amine groups that allow for effective coupling reactions such as the "click" reaction and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling. These monofunctional ßCDs were used as building blocks of NCCs in the presence of PFH to obtain functional NCCs as precursors of bioconjugation. EPPT1 as a synthetic peptide specific to uMUC1 and folic acid (FA) as the most commonly used targeting agent along with PEGylation were successfully shown as bioconjugation examples. Lastly, fluorescently labeled NCCs were obtained via fluorescein isothiocyanate (FITC) and alkyne functional NCC reaction through propargyl amine and isothiocyanate group reaction. The obtained bioconjugates were tested in vitro to validate the conjugation, and the ability to lower the histotripsy cavitation threshold, which is necessary for NMH, was demonstrated for all bioconjugates. Overall, the results showed that all obtained bioconjugates successfully lowered the cavitation threshold pressure while also fulfilling the desired bioconjugation metrics to serve as improved tools to enhance NMH as a targeted noninvasive ablation method.


Subject(s)
Fluorocarbons , Nanoparticles , beta-Cyclodextrins , Fluorocarbons/chemistry , Nanoparticles/chemistry , Amines
3.
Front Plant Sci ; 13: 951097, 2022.
Article in English | MEDLINE | ID: mdl-36061762

ABSTRACT

Plant diseases cause significant decreases in yield and quality of crops and consequently pose a very substantial threat to food security. In the continuous search for environmentally friendly crop protection, exploitation of RNA interferance machinery is showing promising results. It is well established that small RNAs (sRNAs) including microRNA (miRNA) and small interfering RNA (siRNA) are involved in the regulation of gene expression via both transcriptional and post-transcriptional RNA silencing. sRNAs from host plants can enter into pathogen cells during invasion and silence pathogen genes. This process has been exploited through Host-Induced Gene Silencing (HIGS), in which plant transgenes that produce sRNAs are engineered to silence pest and pathogen genes. Similarly, exogenously applied sRNAs can enter pest and pathogen cells, either directly or via the hosts, and silence target genes. This process has been exploited in Spray-Induced Gene Silencing (SIGS). Here, we focus on the role of sRNAs and review how they have recently been used against various plant pathogens through HIGS or SIGS-based methods and discuss advantages and drawbacks of these approaches.

4.
Transgenic Res ; 26(3): 323-330, 2017 06.
Article in English | MEDLINE | ID: mdl-28070852

ABSTRACT

Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T â†’ M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T â†’ M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.


Subject(s)
Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Solanum melongena/genetics , Solanum melongena/microbiology , Amino Acid Substitution , Ascomycota/pathogenicity , Binding Sites , Genetic Complementation Test , Genetic Predisposition to Disease , Solanum lycopersicum/genetics , Plant Diseases/genetics , Plants, Genetically Modified , Polymorphism, Genetic
5.
BMC Plant Biol ; 10: 58, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20370910

ABSTRACT

BACKGROUND: Excessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions. RESULTS: Under control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles. CONCLUSIONS: Plants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline conditions. The localization of QTL for these traits and the identification of lines with specific antioxidant and growth responses may be useful for breeding potentially salt tolerant tomato cultivars having higher antioxidant levels under nonstress and salt stress conditions.


Subject(s)
Antioxidants/metabolism , Quantitative Trait Loci/genetics , Salt Tolerance/genetics , Solanum/genetics , Alleles , Ascorbate Peroxidases , Catalase/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Flavonoids/metabolism , Inbreeding , Peroxidases/metabolism , Phenols/metabolism , Salt Tolerance/drug effects , Sodium Chloride/pharmacology , Solanum/anatomy & histology , Solanum/enzymology , Solanum/growth & development , Solubility/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...