Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Dis Aquat Organ ; 156: 115-121, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095366

ABSTRACT

This work generates the data needed to set epidemiological cut-off values for disc-diffusion zone measurements of Vibrio cholerae. The susceptibility of 147 European isolates of non-O1/non-O139 V. cholerae to 19 antibiotics was established using a standardised disc diffusion method which specified incubation of Mueller Hinton agar plates at 35°C. Epidemiological cut-off values were calculated by analysis of the zone size data with the statistically based normalised resistance interpretation method. Cut-off values for 17 agents were calculated by analysis of the aggregated data from all 4 laboratories participating in this study. The cut-off values calculated were ≥18 mm for amoxicillin/clavulanate, ≥18 mm for amikacin, ≥19 mm for ampicillin, ≥27 mm for cefepime, ≥31 mm for cefotaxime, ≥24 mm for ceftazidime, ≥24 mm for chloramphenicol, ≥31 mm for ciprofloxacin, ≥16 mm for erythromycin, ≥ 27 mm for florfenicol, ≥16 mm for gentamicin, ≥23 mm for imipenem, ≥25 mm for meropenem, ≥29 mm for nalidixic acid, ≥28 mm for norfloxacin, ≥13 mm for streptomycin and ≥23 mm for tetracycline. For the other 2 agents the data from 1 laboratory was excluded from the censored aggregation because the data from that laboratory was considered excessively imprecise. The cut-off values for these 2 agents calculated for the aggregation of the data from 3 laboratories were ≥23 mm for trimethoprim and ≥24 mm for trimethoprim/sulfamethoxazole. These zone size data will be submitted to the Clinical Laboratory Standards Institute (CLSI) and European Committee for Antimicrobial Susceptibility Testing (EUCAST) for their consideration in setting international consensus epidemiological cut-off values for non O1/non-O139 V. cholerae.


Subject(s)
Anti-Bacterial Agents , Vibrio cholerae , Animals , Microbial Sensitivity Tests/veterinary , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , Trimethoprim
2.
Front Microbiol ; 12: 754464, 2021.
Article in English | MEDLINE | ID: mdl-34867877

ABSTRACT

Most strains of Vibrio parahaemolyticus are unable to utilize sucrose as carbon source, though few exceptions exist. We investigated a sucrose-positive V. parahaemolyticus strain by whole-genome sequencing (WGS) and confirmed the presences of a genomic island containing sucrose utilization genes. A 4.7 kb DNA cluster consisting of three genes: scrA encoding a sucrose uptake protein, scrK encoding a fructokinase, and scrB coding for a sucrose-6-phosphate hydrolase, was PCR amplified and inserted into the Vibrio/Escherichia coli shuttle vector pVv3. Two recombinant plasmids, only differing in the orientation of the insert with respect to the pVv3-lacZα-fragment, conferred the E. coli K12 transformants the ability to utilize sucrose. The introduction of the two plasmids into sucrose-negative V. parahaemolyticus and V. vulnificus strains also results in a change of the sucrose utilization phenotype from negative to positive. By performing a multiplex PCR targeting scrA, scrK, and scrB, 43 scr-positive V. parahaemolyticus isolates from our collection of retail strains were detected and confirmed to be able to use sucrose as carbon source. Strains unable to utilize the disaccharide were negative by PCR for the scr genes. For in-depth characterization, 17 sucrose-positive V. parahaemolyticus were subjected to WGS. A genomic island with a nucleotide identity of >95% containing scrA, scrB, scrK and three additional coding sequences (CDS) were identified in all strains. The additional genes were predicted as a gene coding for a transcriptional regulator (scrR), a porin encoding gene and a CDS of unknown function. Sequence comparison indicated that the genomic island was located in the same region of the chromosome II in all analyzed V. parahaemolyticus strains. Structural comparison of the genomes with sequences of the sucrose utilizing species V. alginolyticus revealed the same genomic island, which indicates a possible distribution of this genetic structure by horizontal gene transfer. The comparison of all genome sequences based on SNP differences reveals that the presence of sucrose utilizing genes is found in genetically diverse V. parahaemolyticus strains and is not restricted to a subset of closely related strains.

3.
Microorganisms ; 8(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429107

ABSTRACT

Vibrio cincinnatiensis is a halophilic species which has been found in marine and estuarine environments worldwide. The species is considered a rare pathogen for which the significance for humans is unclear. In this study, nine veterinary isolates were investigated that were obtained from domestic animals in Germany. The isolates were mostly recovered from abortion material of pigs, cattle, and horse (amnion or fetuses). One isolate was from a goose. A human clinical strain from a case of enteritis in Germany described in the literature was also included in the study. Whole-genome sequencing (WGS) of all isolates and MALDI-TOF MS (matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry) were performed to verify the species assignment. All strains were investigated for phenotypic traits including antimicrobial resistance (AMR), biochemical properties, and two virulence-associated phenotypes (hemolytic activity and resistance to human serum). WGS data and MS spectra confirmed that all veterinary isolates are closely related to the type strain V. cincinnatiensis NCTC12012. An exception was the human isolate from Germany which is related to the other isolates but could belong to another species. The isolates were similar in most biochemical phenotypes. Only one strain showed a very weak hemolytic activity against sheep erythrocytes, and serum resistance was intermediate in two strains. AMR phenotypes were more variable between the isolates. Resistances were observed against ß-lactams ampicillin and cefoxitin and against tetracycline and the sulfonamide antibiotics trimethoprim and sulfamethoxazole. Some acquired AMR genes were identified by bioinformatics analyses. WGS and MALDI-TOF MS data reveal a close relationship of the veterinary isolates and the type strain V. cincinnatiensis NCTC12012, which is a clinical human isolate. As the veterinary isolates of this study were mostly recovered from abortion material (amnions and fetuses), a zoonotic potential of the veterinary isolates seems possible.

4.
Front Microbiol ; 10: 733, 2019.
Article in English | MEDLINE | ID: mdl-31031724

ABSTRACT

Vibrio cholerae is a natural inhabitant of aquatic ecosystems globally. Strains of the serogroups O1 and O139 cause the epidemic diarrheal disease cholera. In Northern European waters, V. cholerae bacteria belonging to other serogroups (designated non-O1, non-O139) are present, of which some strains have been associated with gastrointestinal infections or extraintestinal infections, like wound infections or otitis. For this study, environmental strains from the German coastal waters of the North Sea and the Baltic Sea were selected (100 strains) and compared to clinical strains (10 isolates) that were from patients who contracted the infections in the same geographical region. The strains were characterized by MLST and examined by PCR for the presence of virulence genes encoding the cholera toxin, the toxin-coregulated pilus (TCP), and other virulence-associated accessory factors. The latter group comprised hemolysins, RTX toxins, cholix toxin, pandemic islands, and type III secretion system (TTSS). Phenotypic assays for hemolytic activity against human and sheep erythrocytes were also performed. The results of the MLST analysis revealed a considerable heterogeneity of sequence types (in total 74 STs). The presence of virulence genes was also variable and 30 profiles were obtained by PCR. One profile was found in 38 environmental strains and six clinical strains. Whole genome sequencing (WGS) was performed on 15 environmental and 7 clinical strains that were ST locus variants in one, two, or three alleles. Comparison of WGS results revealed that a set of virulence genes found in some clinical strains is also present in most environmental strains irrespective of the ST. In few strains, more virulence factors are acquired through horizontal gene transfer (i.e., TTSS, genomic islands). A distinction between clinical and environmental strains based on virulence gene profiles is not possible for our strains. Probably, many virulence traits of V. cholerae evolved in response to biotic and abiotic pressure and serve adaptation purposes in the natural aquatic environment, but provide a prerequisite for infection of susceptible human hosts. These findings indicate the need for surveillance of Vibrio spp. in Germany, as due to global warming abundance of Vibrio will rise and infections are predicted to increase.

5.
Front Microbiol ; 8: 408, 2017.
Article in English | MEDLINE | ID: mdl-28360895

ABSTRACT

Virulent phages have been used for many years to type Brucella isolates, but until recently knowledge about the genetic makeup of these phages remains limited. In this work the host specificity and genomic sequences of the original set (deposited in 1960) of VLA Brucella reference phages Tb, Fi, Wb, Bk2, R/C, and Iz were analyzed and compared with hitherto described brucellaphages. VLA phages turned out to be different from homonymous phages in other laboratories. The host range of the phages was defined by performing plaque assays with a wide selection of Brucella strains. Propagation of the phages on different strains did not alter host specificity. Sequencing of the phages TbV, FiV, WbV, and R/CV revealed nucleotide variations when compared to same-named phages previously described by other laboratories. The phages Bk2V and IzV were sequenced for the first time. While Bk2V exhibited the same deletions as WbV, IzV possesses the largest genome of all Brucella reference phages. The duplication of a 301 bp sequence in this phage and the large deletion in Bk2V, WbV, and R/CV may be a result of recombination caused by repetitive sequences located in this DNA region. To identify new phages as potential candidates for lysotyping, the host range and Single Nucleotide Polymorphisms (SNPs) of 22 non-reference Brucella phages were determined. The phages showed lysis patterns different from those of the reference phages and thus represent novel valuable candidates in the typing set.

6.
Front Microbiol ; 7: 24, 2016.
Article in English | MEDLINE | ID: mdl-26858702

ABSTRACT

Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analyzed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from Brucella inopinata. BiPBO1 is a siphovirus that infects several Brucella species including Brucella abortus and Brucella melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1). The bacterial (attB) and phage (attP) attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.

7.
Genome Announc ; 2(1)2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24482520

ABSTRACT

We report on the 41,143-bp genome of brucellaphage F1, a podovirus that infects several Brucella species. The F1 genome is almost identical to the genome of brucellaphage Tb. However, some structural proteins of the phages exhibit extensive polymorphisms and might be responsible for their different host ranges.

8.
Int J Food Microbiol ; 145(1): 326-30, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21167618

ABSTRACT

Knowledge of the number of organisms in a food product at the time of consumption is crucial to assess the risk from a deliberate contamination of food samples with Brucella. To date, very little data on the survival times of Brucella in different food matrices is available. This study was conducted to assess the survival times of Brucella spp. in water, milk and yogurt. These food products were inoculated with bacteria, serial dilutions of the food samples plated and the number of surviving bacteria counted. Under normal storage conditions Brucella survived in UHT milk for 87 days, for 60 days in water and less than a week in yogurt. Also, when milk was inoculated with low bacterial numbers, Brucella multiplied by five log units within three weeks. Further we could not confirm that a high fat content in food has a protective effect on Brucella survival. Brucella survived in 3.5% and 10.0% fat yogurt for four and two days, respectively. These results show that appropriate methods for the rapid detection of this pathogen from food matrices are required.


Subject(s)
Brucella/growth & development , Food Contamination/analysis , Milk/microbiology , Mineral Waters/microbiology , Yogurt/microbiology , Animals , Colony Count, Microbial , Dietary Fats/analysis , Food Microbiology/standards
9.
BMC Microbiol ; 10: 269, 2010 Oct 23.
Article in English | MEDLINE | ID: mdl-20969797

ABSTRACT

BACKGROUND: A commercial biotyping system (Taxa Profile™, Merlin Diagnostika) testing the metabolization of various substrates by bacteria was used to determine if a set of phenotypic features will allow the identification of members of the genus Brucella and their differentiation into species and biovars. RESULTS: A total of 191 different amines, amides, amino acids, other organic acids and heterocyclic and aromatic substrates (Taxa Profile™ A), 191 different mono-, di-, tri- and polysaccharides and sugar derivates (Taxa Profile™ C) and 95 amino peptidase- and protease-reactions, 76 glycosidase-, phosphatase- and other esterase-reactions, and 17 classic reactions (Taxa Profile™ E) were tested with the 23 reference strains representing the currently known species and biovars of Brucella and a collection of 60 field isolates. Based on specific and stable reactions a 96-well "Brucella identification and typing" plate (Micronaut™) was designed and re-tested in 113 Brucella isolates and a couple of closely related bacteria.Brucella species and biovars revealed characteristic metabolic profiles and each strain showed an individual pattern. Due to their typical metabolic profiles a differentiation of Brucella isolates to the species level could be achieved. The separation of B. canis from B. suis bv 3, however, failed. At the biovar level, B. abortus bv 4, 5, 7 and B. suis bv 1-5 could be discriminated with a specificity of 100%. B. melitensis isolates clustered in a very homogenous group and could not be resolved according to their assigned biovars. CONCLUSIONS: The comprehensive testing of metabolic activity allows cluster analysis within the genus Brucella. The biotyping system developed for the identification of Brucella and differentiation of its species and biovars may replace or at least complement time-consuming tube testing especially in case of atypical strains. An easy to handle identification software facilitates the applicability of the Micronaut™ system for microbiology laboratories.


Subject(s)
Bacterial Typing Techniques/methods , Brucella/isolation & purification , Brucella/metabolism , Brucellosis/microbiology , Brucellosis/veterinary , Cattle Diseases/microbiology , Amino Acids/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Typing Techniques/instrumentation , Brucella/classification , Brucella/enzymology , Carbohydrate Metabolism , Cattle , Humans , Molecular Sequence Data , Phylogeny
10.
Int J Syst Evol Microbiol ; 60(Pt 4): 801-808, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19661515

ABSTRACT

A Gram-negative, non-motile, non-spore-forming coccoid bacterium (strain BO1(T)) was isolated recently from a breast implant infection of a 71-year-old female patient with clinical signs of brucellosis. Affiliation of strain BO1(T) to the genus Brucella was confirmed by means of polyamine pattern, polar lipid profile, fatty acid profile, quinone system, DNA-DNA hybridization studies and by insertion sequence 711 (IS711)-specific PCR. Strain BO1(T) harboured four to five copies of the Brucella-specific insertion element IS 711, displaying a unique banding pattern, and exhibited a unique 16S rRNA gene sequence and also grouped separately in multilocus sequence typing analysis. Strain BO1(T) reacted with Brucella M-monospecific antiserum. Incomplete lysis was detected with bacteriophages Tb (Tbilisi), F1 and F25. Biochemical profiling revealed a high degree of enzymic activity and metabolic capabilities. In multilocus VNTR (variable-number tandem-repeat) analysis, strain BO1(T) showed a very distinctive profile and clustered with the other 'exotic' Brucella strains, including strains isolated from marine mammals, and Brucella microti, Brucella suis biovar 5 and Brucella neotomae. Comparative omp2a and omp2b gene sequence analysis revealed the most divergent omp2 sequences identified to date for a Brucella strain. The recA gene sequence of strain BO1(T) differed in seven nucleotides from the Brucella recA consensus sequence. Using the Brucella species-specific multiplex PCR assay, strain BO1(T) displayed a unique banding pattern not observed in other Brucella species. From the phenotypic and molecular analysis it became evident that strain BO1( T) was clearly different from all other Brucella species, and therefore represents a novel species within the genus Brucella. Because of its unexpected isolation, the name Brucella inopinata with the type strain BO1(T) (=BCCN 09-01(T)=CPAM 6436(T)) is proposed.


Subject(s)
Breast Implants/microbiology , Brucella/classification , Brucella/isolation & purification , Brucellosis/microbiology , Prosthesis-Related Infections/microbiology , Aged , Bacterial Outer Membrane Proteins/genetics , Bacterial Typing Techniques , Breast Implantation/adverse effects , Brucella/genetics , Brucella/physiology , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Fatty Acids/analysis , Female , Genes, rRNA , Genotype , Humans , Minisatellite Repeats , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
11.
J Microbiol Methods ; 80(1): 112-4, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19887090

ABSTRACT

To facilitate routine laboratories in the effective diagnosis of brucellosis, we report a robust and rapid multiplex PCR assay, which allows for the differentiation of all nine currently recognised Brucella species. This includes the recently described species B. microti, B. inopinata, B. ceti and B. pinnipedialis.


Subject(s)
Brucella/isolation & purification , Brucellosis/microbiology , Polymerase Chain Reaction/methods , Brucella/classification , Brucella/genetics , Brucellosis/diagnosis , Humans
12.
Int J Syst Evol Microbiol ; 58(Pt 2): 375-82, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18218934

ABSTRACT

Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915(T) and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA-DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915(T) and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915(T) and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate cluster within the genus Brucella. Multilocus sequence typing (MLST) analysis using nine different loci also placed the two isolates separately from other brucellae. In the IS711-based AMOS PCR, a 1900 bp fragment was generated with the Brucella ovis-specific primers, revealing that the insertion element had integrated between a putative membrane protein and cboL, encoding a methyltransferase, an integration site not observed in other brucellae. Isolates CCM 4915(T) and CCM 4916 could be clearly distinguished from all known Brucella species and their biovars by means of both their phenotypic and molecular properties, and therefore represent a novel species within the genus Brucella, for which the name Brucella microti sp. nov. with the type strain CCM 4915(T) (=BCCN 07-01(T)=CAPM 6434(T)) is proposed.


Subject(s)
Arvicolinae/microbiology , Brucella/classification , Brucella/isolation & purification , Brucellosis/veterinary , Rodent Diseases/microbiology , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Typing Techniques , Brucella/genetics , Brucella/physiology , Brucellosis/microbiology , DNA, Bacterial/analysis , Genes, rRNA , Genotype , Minisatellite Repeats/genetics , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Sequence Analysis, DNA , Species Specificity
13.
Berl Munch Tierarztl Wochenschr ; 116(9-10): 368-72, 2003.
Article in German | MEDLINE | ID: mdl-14526466

ABSTRACT

Brucella (B.) canis was isolated from ejaculate of a 4-year old Korthals-Griffon male dog after occurrence of epididymitis and orchitis. Despite several trials of therapy with different antibiotics relapes occurred, with B. canis being isolated from ejaculate, blood and urine samples, respectively. Bacteriological examinations were added by serological testing over a period of about 1.5 years. During the study SAT serum titre steadily dropped from 1:200 to 1:50. By CFT, B. canis antibodies were detectable at the beginning with a titre of 1:320 and to the end of the study with titres between 1:80 and 1:160.


Subject(s)
Brucella canis/isolation & purification , Brucellosis/veterinary , Dog Diseases/diagnosis , Animals , Anti-Bacterial Agents/therapeutic use , Antibodies, Bacterial/analysis , Brucella canis/immunology , Brucellosis/diagnosis , Brucellosis/drug therapy , Dog Diseases/drug therapy , Dog Diseases/microbiology , Dogs , Male , Recurrence , Semen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...