Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Eur J Cell Biol ; 103(2): 151428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850712

ABSTRACT

Actin organization is crucial for establishing cell polarity, which influences processes such as directed cell motility and division. Despite its critical role in living organisms, achieving similar polarity in synthetic cells remains challenging. In this study, we employ a bottom-up approach to investigate how molecular crowders facilitate the formation of cortex-like actin networks and how these networks localize and organize based on membrane shape. Using giant unilamellar vesicles (GUVs) as models for cell membranes, we show that actin filaments can arrange along the membrane to form cortex-like structures. Notably, this organization is achieved using only actin and crowders as a minimal set of components. We utilize surface micropatterning to examine actin filament organization in deformed GUVs adhered to various pattern shapes. Our findings indicate that at the periphery of spherical GUVs, actin bundles align along the membrane. However, in highly curved regions of adhered GUVs, actin bundles avoid crossing the highly curved edges perpendicular to the adhesion site and instead remain in the lower curved regions by aligning parallel to the micropatterned surface. Furthermore, the actin bundles increase the stiffness of the GUVs, effectively counteracting strong deformations when GUVs adhere to micropatterns. This finding is corroborated by real-time deformability cytometry on GUVs with synthetic actin cortices. By precisely manipulating the shape of GUVs, our study provides a minimal system to investigate the interplay between actin structures and the membrane. Our findings provide insights into the spatial organization of actin structures within crowded environments, specifically inside GUVs that resemble the size and shape of cells. This study advances our understanding of actin network organization and functionality within cell-sized compartments.


Subject(s)
Actin Cytoskeleton , Cell Membrane , Unilamellar Liposomes , Actin Cytoskeleton/metabolism , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Cell Membrane/metabolism , Actins/metabolism , Animals
2.
Adv Sci (Weinh) ; : e2401110, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864352

ABSTRACT

Multi-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behavior in vitro. However, in vivo tissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds and in vivo bioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform for in vivo and in situ manufacturing of microimplants raised from synthetic polymer-based inks is currently missing. Here, a platform for minimal-invasive manufacturing of microimplants directly in the organism is presented by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, first applicational examples of biological responses to in situ printed microimplants are demonstrated in the teleost fish Oryzias latipes and in embryos of the fruit fly Drosophila melanogaster. This provides a framework for future studies addressing the suitability of inks for in vivo 3D manufacturing. The platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.

3.
Nat Commun ; 15(1): 2307, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485920

ABSTRACT

Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.


Subject(s)
Nanotubes , Proteins , Cell Division , Proteins/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , DNA/metabolism
4.
Nano Lett ; 23(17): 7815-7824, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37586706

ABSTRACT

Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.


Subject(s)
Nanostructures , Zebrafish , Animals , Cell Nucleus , Nanostructures/chemistry , DNA/chemistry
5.
Interface Focus ; 13(5): 20230028, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37577007

ABSTRACT

The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.

6.
RNA Biol ; 20(1): 510-524, 2023 01.
Article in English | MEDLINE | ID: mdl-37498217

ABSTRACT

Design strategies for DNA and RNA nanostructures have developed along parallel lines for the past 30 years, from small structural motifs derived from biology to large 'origami' structures with thousands to tens of thousands of bases. With the recent publication of numerous RNA origami structures and improved design methods-even permitting co-transcriptional folding of kilobase-sized structures - the RNA nanotechnolgy field is at an inflection point. Here, we review the key achievements which inspired and enabled RNA origami design and draw comparisons with the development and applications of DNA origami structures. We further present the available computational tools for the design and the simulation, which will be key to the growth of the RNA origami community. Finally, we portray the transition from RNA origami structure to function. Several functional RNA origami structures exist already, their expression in cells has been demonstrated and first applications in cell biology have already been realized. Overall, we foresee that the fast-paced RNA origami field will provide new molecular hardware for biophysics, synthetic biology and biomedicine, complementing the DNA origami toolbox.


Subject(s)
Nanostructures , Nanotechnology , RNA/genetics , RNA/chemistry , Nanostructures/chemistry , DNA/chemistry , Computer Simulation , Nucleic Acid Conformation
7.
Nano Lett ; 23(14): 6330-6336, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37440701

ABSTRACT

Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.


Subject(s)
Nanostructures , Nanostructures/chemistry , Nucleic Acid Conformation , Nanotechnology/methods , DNA/chemistry , Unilamellar Liposomes , Lipids
8.
EMBO Rep ; 24(6): e56818, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37042686

ABSTRACT

Immature dendritic cells (iDCs) migrate in microenvironments with distinct cell and extracellular matrix densities in vivo and contribute to HIV-1 dissemination and mounting of antiviral immune responses. Here, we find that, compared to standard 2D suspension cultures, 3D collagen as tissue-like environment alters iDC properties and their response to HIV-1 infection. iDCs adopt an elongated morphology with increased deformability in 3D collagen at unaltered activation, differentiation, cytokine secretion, or responsiveness to LPS. While 3D collagen reduces HIV-1 particle uptake by iDCs, fusion efficiency is increased to elevate productive infection rates due to elevated cell surface exposure of the HIV-1-binding receptor DC-SIGN. In contrast, 3D collagen reduces HIV transfer to CD4 T cells from iDCs. iDC adaptations to 3D collagen include increased pro-inflammatory cytokine production and reduced antiviral gene expression in response to HIV-1 infection. Adhesion to a 2D collagen matrix is sufficient to increase iDC deformability, DC-SIGN exposure, and permissivity to HIV-1 infection. Thus, mechano-physical cues of 2D and 3D tissue-like collagen environments regulate iDC function and shape divergent roles during HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Humans , Cytokines/metabolism , Collagen/metabolism , Antiviral Agents , Dendritic Cells
9.
ACS Synth Biol ; 12(2): 369-374, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36652603

ABSTRACT

Spontaneous and induced front-rear polarization and a subsequent asymmetric actin cytoskeleton is a crucial event leading to cell migration, a key process involved in a variety of physiological and pathological conditions such as tissue development, wound healing, and cancer. Migration of adherent cells relies on the balance between adhesion to the underlying matrix and cytoskeleton-driven front protrusion and rear retraction. A current challenge is to uncouple the effect of adhesion and shape from the contribution of the cytoskeleton in regulating the onset of front-rear polarization. Here, we present a minimal model system that introduces an asymmetric actin cytoskeleton in synthetic cells, which are resembled by giant unilamellar lipid vesicles (GUVs) adhering onto symmetric and asymmetric micropatterned surfaces. Surface micropatterning of streptavidin-coated regions with varying adhesion shape and area was achieved by maskless UV photopatterning. To further study the effects of GUV shape on the cytoskeletal organization, actin filaments were polymerized together with bundling proteins inside the GUVs. The micropatterns induce synthetic cell deformation upon adhesion to the surface, with the cell shape adapting to the pattern shape and size. As expected, asymmetric patterns induce an asymmetric deformation in adherent synthetic cells. Actin filaments orient along the long axis of the deformed GUV, when having a length similar to the size of the major axis, whereas short filaments exhibit random orientation. With this bottom-up approach we have laid the first steps to identify the relationship between cell front-rear polarization and cytoskeleton organization in the future. Such a minimal system will allow us to further study the major components needed to create a polarized cytoskeleton at the onset of migration.


Subject(s)
Cues , Unilamellar Liposomes , Unilamellar Liposomes/metabolism , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Lipids
10.
Small ; 19(13): e2202711, 2023 03.
Article in English | MEDLINE | ID: mdl-35971190

ABSTRACT

The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid-liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells.


Subject(s)
Artificial Cells , Unilamellar Liposomes , Water , Models, Theoretical
11.
Biophys J ; 121(24): 4840-4848, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36088535

ABSTRACT

The correlation between genetic information and characteristics of a living cell-its genotype and its phenotype-constitutes the basis of genetics. Here, we experimentally realize a primitive form of genotype-phenotype mapping with DNA origami. The DNA origami can polymerize into two-dimensional lattices (phenotype) via blunt-end stacking facilitated by edge staples at the seam of the planar DNA origami. There are 80 binding positions for edge staples, which allow us to translate an 80-bit long binary code (genotype) onto the DNA origami. The presence of an edge staple thus corresponds to a "1" and its absence to a "0." The interactions of our DNA-based system can be reproduced by a polyomino model. Polyomino growth simulations qualitatively reproduce our experimental results. We show that not only the absolute number of base stacks but also their sequence position determine the cluster size and correlation length of the orientation of single DNA origami within the cluster. Importantly, the mutation of a few bits can result in major morphology changes of the DNA origami cluster, while more often, major sequence changes have no impact. Our experimental realization of a correlation between binary information ("genotype") and cluster morphology ("phenotype") thus reproduces key properties of genotype-phenotype maps known from living systems.


Subject(s)
DNA , Nanostructures , Nucleic Acid Conformation , DNA/genetics , DNA/chemistry , Nanostructures/chemistry , Nanotechnology
12.
Angew Chem Int Ed Engl ; 61(32): e202203928, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35657164

ABSTRACT

Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate-based droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observed that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies.


Subject(s)
Microfluidics , Kinetics , Microfluidics/methods
13.
Nat Chem ; 14(8): 958-963, 2022 08.
Article in English | MEDLINE | ID: mdl-35725773

ABSTRACT

The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer-target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells.


Subject(s)
Artificial Cells , Metal Nanoparticles , Cytoskeleton/physiology , DNA , Gold , Nanotechnology
14.
ACS Nano ; 16(5): 7233-7241, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35377150

ABSTRACT

Cytoskeletal elements, like actin and myosin, have been reconstituted inside lipid vesicles toward the vision to reconstruct cells from the bottom up. Here, we realize the de novo assembly of entirely artificial DNA-based cytoskeletons with programmed multifunctionality inside synthetic cells. Giant unilamellar lipid vesicles (GUVs) serve as cell-like compartments, in which the DNA cytoskeletons are repeatedly and reversibly assembled and disassembled with light using the cis-trans isomerization of an azobenzene moiety positioned in the DNA tiles. Importantly, we induced ordered bundling of hundreds of DNA filaments into more rigid structures with molecular crowders. We quantify and tune the persistence length of the bundled filaments to achieve the formation of ring-like cortical structures inside GUVs, resembling actin rings that form during cell division. Additionally, we show that DNA filaments can be programmably linked to the compartment periphery using cholesterol-tagged DNA as a linker. The linker concentration determines the degree of the cortex-like network formation, and we demonstrate that the DNA cortex-like network can deform GUVs from within. All in all, this showcases the potential of DNA nanotechnology to mimic the diverse functions of a cytoskeleton in synthetic cells.


Subject(s)
Artificial Cells , Actins , Cytoskeleton , Unilamellar Liposomes/chemistry , DNA , Lipids
15.
Nano Lett ; 22(3): 1145-1150, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35089720

ABSTRACT

Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate. Upon addition of ATP, hollow lipid nanotubes with a length of tens of micrometer are pulled from single GUVs due to the motor activity. We employ the same mechanism to pull lipid nanotubes from different types of cells. We find that the length and number of nanotubes critically depends on the cell type, whereby suspension cells form bigger networks than adherent cells. This suggests that molecular machines can be used to exert forces on living cells to probe membrane-to-cortex attachment.


Subject(s)
Actomyosin , Nanotubes , Actin Cytoskeleton/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , Lipids/chemistry , Nanotubes/chemistry , Unilamellar Liposomes/chemistry
16.
Adv Mater ; 34(6): e2106709, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34800321

ABSTRACT

Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.


Subject(s)
Artificial Cells , Lasers , Printing, Three-Dimensional , Synthetic Biology , Unilamellar Liposomes
17.
Nano Lett ; 22(1): 302-310, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34939414

ABSTRACT

The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell-cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell-cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell-cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.


Subject(s)
Adherens Junctions , Cadherins , Cadherins/genetics , Cell Adhesion , DNA/metabolism , Epithelial Cells/metabolism
18.
Elife ; 102021 12 20.
Article in English | MEDLINE | ID: mdl-34927583

ABSTRACT

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Subject(s)
Artificial Cells , Bioengineering/methods , Bioengineering/statistics & numerical data , Bioengineering/trends , Intersectoral Collaboration , Organelles/physiology , Synthetic Biology/trends , Forecasting , Humans
19.
Nano Lett ; 21(14): 5952-5957, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34251204

ABSTRACT

A minimal synthetic cell should contain a substrate for information storage and have the capability to divide. Notable efforts were made to assemble functional synthetic cells from the bottom up, however often lacking the capability to reproduce. Here, we develop a mechanism to fully control reversible cargo loading and division of DNA-containing giant unilamellar vesicles (GUVs) with light. We make use of the photosensitizer Chlorin e6 (Ce6) which self-assembles into lipid bilayers and leads to local lipid peroxidation upon illumination. On the time scale of minutes, illumination induces the formation of transient pores, which we exploit for cargo encapsulation or controlled release. In combination with osmosis, complete division of two daughter GUVs can be triggered within seconds of illumination due to a spontaneous curvature increase. We ultimately demonstrate the division of a selected DNA-containing GUV with full spatiotemporal control-proving the relevance of the division mechanism for bottom-up synthetic biology.


Subject(s)
Artificial Cells , Unilamellar Liposomes , DNA , Lipid Bilayers , Synthetic Biology
20.
Nat Commun ; 12(1): 3967, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172734

ABSTRACT

Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Protons , DNA, Bacterial/chemistry , Hydrogen-Ion Concentration , Light , Microorganisms, Genetically-Modified , Proton Pumps/genetics , Proton Pumps/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...