Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(6): 063601, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822048

ABSTRACT

Strong light-matter interactions are critical for quantum technologies based on light, such as memories or nonlinear interactions. Solid state materials will be particularly important for such applications due to the relative ease of fabrication of components. Silicon vacancy centers (SiV^{-}) in diamond feature especially narrow inhomogeneous spectral lines, which are rare in solid materials. Here, we demonstrate resonant coherent manipulation, stimulated Raman adiabatic passage, and strong light-matter interaction via the four-wave mixing of a weak signal field in an ensemble of SiV^{-} centers.

2.
Nat Commun ; 7: 13512, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841265

ABSTRACT

Complete control of the state of a quantum bit (qubit) is a fundamental requirement for any quantum information processing (QIP) system. In this context, all-optical control techniques offer the advantage of a well-localized and potentially ultrafast manipulation of individual qubits in multi-qubit systems. Recently, the negatively charged silicon vacancy centre (SiV-) in diamond has emerged as a novel promising system for QIP due to its superior spectral properties and advantageous electronic structure, offering an optically accessible Λ-type level system with large orbital splittings. Here, we report on all-optical resonant as well as Raman-based coherent control of a single SiV- using ultrafast pulses as short as 1 ps, significantly faster than the centre's phonon-limited ground state coherence time of about 40 ns. These measurements prove the accessibility of a complete set of single-qubit operations relying solely on optical fields and pave the way for high-speed QIP applications using SiV- centres.

SELECTION OF CITATIONS
SEARCH DETAIL
...