Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 407(11): 3093-102, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25519725

ABSTRACT

Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of U rel(w) < 0.05 %. To achieve this, a microwave-assisted digestion procedure for Rh and a hotplate digestion procedure for Mo were developed along with highly accurate and precise inductively coupled plasma optical emission spectrometry (ICP OES) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) methods required to assist with the preparation and as dissemination tools.

2.
Anal Sci ; 19(8): 1151-6, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12945668

ABSTRACT

Controlled-pore silica glass modified with N-propylsalicylaldimine (SCPSG) has been investigated as a surface-active matrix for the separation of some metal ions. The porous silica glass base was confirmed to have better stability towards hydrolysis in aqueous solution buffered at pH=9 in comparison to silica gel, which showed twice the surface area of controlled-pore silica glass. The different analytical parameters affecting the batch mode separation and preconcentration of trace Al(II), Ag(I) and Hg(II) in environmental samples using SCPSG, prior to their determination using inductively coupled plasma mass spectrometry (ICP-MS), were studied. The optimum conditions are pH 9.0 +/- 0.1, time of stirring 30 min and the eluent concentration 0.5 mol dm(-3) HNO3. The ion-exchange capacity of SCPSG with respect to Al(III), Ag(I) and Hg(II) was 0.27, 0.18 and 0.23 mmol g(-1), respectively. The recovery values for the metal ions were 96.8 +/- 0.86, 98.1 +/- 0.60 and 96.2 +/- 1.06%, and the analytical detection limits were 26.1, 1.49 and 0.44 pg cm(-3), respectively, for a preconcentration factor of 100. The method has been applied to the determination of the investigated metal ions in natural water samples as well as certified and reported samples and the results were found to be accurate.

SELECTION OF CITATIONS
SEARCH DETAIL
...