Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(28): 6251-6264, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37428840

ABSTRACT

Homo-dimer formation is important for the function of many proteins. Although dimeric forms of cryptochromes (Cry) have been found by crystallography and were recently observed in vitro for European robin Cry4a, little is known about the dimerization of avian Crys and the role it could play in the mechanism of magnetic sensing in migratory birds. Here, we present a combined experimental and computational investigation of the dimerization of robin Cry4a resulting from covalent and non-covalent interactions. Experimental studies using native mass spectrometry, mass spectrometric analysis of disulfide bonds, chemical cross-linking, and photometric measurements show that disulfide-linked dimers are routinely formed, that their formation is promoted by exposure to blue light, and that the most likely cysteines are C317 and C412. Computational modeling and molecular dynamics simulations were used to generate and assess a number of possible dimer structures. The relevance of these findings to the proposed role of Cry4a in avian magnetoreception is discussed.


Subject(s)
Cryptochromes , Songbirds , Animals , Cryptochromes/chemistry , Dimerization , Songbirds/metabolism , Light
2.
Front Mol Neurosci ; 16: 1107025, 2023.
Article in English | MEDLINE | ID: mdl-36733826

ABSTRACT

Cone photoreceptor cells of night-migratory songbirds seem to process the primary steps of two different senses, vision and magnetoreception. The molecular basis of phototransduction is a prototypical G protein-coupled receptor pathway starting with the photoexcitation of rhodopsin or cone opsin thereby activating a heterotrimeric G protein named transducin. This interaction is well understood in vertebrate rod cells, but parameter describing protein-protein interactions of cone specific proteins are rare and not available for migratory birds. European robin is a model organism for studying the orientation of birds in the earth magnetic field. Recent findings showed a link between the putative magnetoreceptor cryptochrome 4a and the cone specific G-protein of European robin. In the present work, we investigated the interaction of European robin cone specific G protein and cytoplasmic regions of long wavelength opsin. We identified the second loop in opsin connecting transmembrane regions three and four as a critical binding interface. Surface plasmon resonance studies using a synthetic peptide representing the second cytoplasmic loop and purified G protein α-subunit showed a high affinity interaction with a K D value of 21 nM. Truncation of the G protein α-subunit at the C-terminus by six amino acids slightly decreased the affinity. Our results suggest that binding of the G protein to cryptochrome can compete with the interaction of G protein and non-photoexcited long wavelength opsin. Thus, the parallel presence of two different sensory pathways in bird cone photoreceptors is reasonable under dark-adapted conditions or during illumination with short wavelengths.

3.
Cells ; 11(13)2022 06 27.
Article in English | MEDLINE | ID: mdl-35805127

ABSTRACT

BACKGROUND: Night-migratory birds sense the Earth's magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. METHODS: Protein-protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. RESULTS: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. CONCLUSIONS: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.


Subject(s)
Cryptochromes , Songbirds , Animals , Cryptochromes/metabolism , GTP-Binding Proteins/metabolism , Magnetic Fields , Retina/metabolism , Songbirds/metabolism
4.
Chemistry ; 27(10): 3496-3503, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33184927

ABSTRACT

The stabilizing neighboring effect of halo substituents on silyl cations was tested for a series of peri-halo substituted acenaphthyl-based silyl cations 3. The chloro- (3 b), bromo- (3 c), and iodo- (3 d) stabilized cations were synthesized by the Corey protocol. Structural and NMR spectroscopic investigations for cations 3 b-d supported by the results of density functional calculations, which indicate their halonium ion nature. According to the fluorobenzonitrile (FBN) method, the silyl Lewis acidity decreases along the series of halonium ions 3, the fluoronium ion 3 a being a very strong and the iodonium ion 3 d a moderate Lewis acid. Halonium ions 3 b and 3 c react with starting silanes in a substituent redistribution reaction and form siliconium ions 4 b and 4 c. The structure of siliconium borate 4 c2 [B12 Br12 ] reveals the trigonal bipyramidal coordination environment of the silicon atom with the two bromo substituents in the apical positions.

5.
Chem Biodivers ; 15(9): e1800173, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29928783

ABSTRACT

Two series of nucleolipids, O-2',3'-heptanylidene- as well as O-2',3'-undecanylidene ketals of six ß-d-ribonucleosides (type A) and partly N-farnesyl derivatives thereof (type B) were prepared in a combinatorial manner. All novel compounds were characterized by elemental analysis and/or ESI mass spectrometry and by UV-, 1 H-, and 13 C-NMR spectroscopy. Conformational parameters of the nucleosides and nucleolipids were calculated from various 3 J(H,H), 3 J(1 H,13 C), and 5 J(F,H) coupling constants. For a drug profiling, the parent nucleosides and their lipophilic derivatives were studied with respect to their distribution (log P) between water and n-octanol as well as water and cyclohexane. From these data, qualitative conclusions were drawn concerning their possible blood-brain barrier passage efficiency. Moreover, nucleolipids were characterized by their molecular descriptor amphiphilic ratio (a.r.), which describes the balance between the hydrophilicity of the nucleoside headgroup and the lipophilicity of the lipid tail. All compounds were investigated in vitro with respect to their cytostatic/cytotoxic activity toward human glioblastoma (GOS 3) as well as rat malignant neuroectodermal BT4Ca cell lines in vitro. In order to differentiate between anticancer and side-effects of the novel nucleolipids, they were also studied on their activity on differentiated human THP-1 macrophages.


Subject(s)
Brain Neoplasms/pathology , Combinatorial Chemistry Techniques , Glioblastoma/pathology , Lipids/chemical synthesis , Purines/chemistry , Pyrimidines/chemistry , Ribonucleosides/chemical synthesis , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Organic Chemicals/chemistry , Rats , Ribonucleosides/chemistry , Spectrum Analysis/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...