ABSTRACT
Otoliths of modern bony fishes are massive polycrystalline structures consisting mainly of calcium carbonate (primarily aragonite), and 1-10% organic residuals. Unlike other biomineralisates like shells, teeth and bones, they are not optimized for mechanical loads but serve the senses of hearing and balance in the inner ear. We examined internal structural variation of otoliths through microstructural and texture analyses. Our study applied the electron backscattered diffraction technique (EBSD) to whole sections of saccular otoliths on cave- and surface-dwelling fish. Application of high spatial resolution EBSD on otoliths of the livebearing fish Poecilia mexicana allowed for an investigation of crystal orientation despite the small size (<150 nm) of aragonite crystallites. Crystallites at the rims of otoliths had a higher structural organization than those situated near the center, where no dominant orientation pattern was discernible. Moreover, the medial (sulcal) face of otoliths, which makes contact with the sensory epithelium, was more structured than the lateral (antisulcal) face.