Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402991, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874424

ABSTRACT

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

2.
Adv Mater ; 35(44): e2305980, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714142

ABSTRACT

Metal-organic frameworks (MOFs) are microporous adsorbents for high-throughput gas separation. Such materials exhibit distinct adsorption characteristics owing to the flexibility of the crystal framework in a nanoparticle, which can be different from its bulk crystal. However, for practical applications, such particles need to be compacted into macroscopic pellets, creating mass-transport limitations. In this work, this problem is addressed by forming materials with structural hierarchy, using a supraparticle-based approach. Spherical supraparticles composed of nanosized MOF particles are fabricated by emulsion templating and they are used as the structural component forming a macroscopic material. Zeolitic imidazolate framework-8 (ZIF-8) particles are used as a model system and the gas-adsorption kinetics of the hierarchical material are compared with conventional pellets without structural hierarchy. It is demonstrated that a pellet packed with supraparticles exhibits a 30 times faster adsorption rate compared to an unstructured ZIF-8 powder pellet. These results underline the importance of controlling structural hierarchy to maximize the performance of existing materials. In the hierarchical MOFs, large macropores between the supraparticles, smaller macropores between individual ZIF-8 primary particles, and micropores inherent to the ZIF-8 framework collude to combine large surface area, defined adsorption sites, and efficient mass transport to enhance performance.

3.
J Am Chem Soc ; 145(32): 17902-17911, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534987

ABSTRACT

The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.

4.
Small ; 19(27): e2300241, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36932894

ABSTRACT

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

5.
iScience ; 23(12): 101775, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33294784

ABSTRACT

Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.

6.
Semin Cell Dev Biol ; 105: 86-101, 2020 09.
Article in English | MEDLINE | ID: mdl-32423851

ABSTRACT

γ-Secretase is an intramembrane aspartyl-protease catalyzing the final step in the regulated intramembrane proteolysis of a large number of single-span type-1 transmembrane proteins. The most extensively studied substrates are the amyloid-ß precursor protein (APP) and the NOTCH receptors. An important technique for the characterization of interactions and conformational changes enabling γ-secretase to perform hydrolysis within the confines of the membrane are molecular dynamics simulations on different time and length scales. Here, we review structural and dynamical features of γ-secretase and its substrates including flexibility descriptions from simulations and experiments. We address (1) conformational sampling of apo-enzyme and unbound substrates (exemplified for APP, NOTCH1 and the apparent non-substrate integrin ß1), (2) substrate recruitment pathways, (3) conformational changes associated with the formation of the recognition complex, (4) cleavage-site unfolding upon interaction with the enzyme's active site, (5) substrate processing after endoproteolysis, and (6) inhibition and modulation of γ-secretase. We conclude with still open questions and suggest further investigations in order to advance our understanding on how γ-secretase selects and processes substrates. This knowledge will improve the ability to better target substrates selectively for therapeutic applications.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Humans
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117460, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31422338

ABSTRACT

Over the past decades, ATR-FTIR has emerged as promising tool for the identification of plants at the genus and (sub-) species level through surface measurements of intact leaves. Theoretical considerations regarding the penetration depth of the evanescent wave into the sample and the thickness of plant leaf cuticles suggest that the structure and composition of the cuticle represent universal taxonomic markers. However, experimental evidence for this hypothesis is scarce. In the current contribution, we present results of a series of simple experiments on epidermal monolayers derived from the bulbs of Allium cepa L. (Amaryllidaceae) as a model system to study the effect of an IR active probe located beyond the theoretical penetration depth of the evanescent wave. We found that this probe had a significant influence on the ATR-FTIR spectra for up to 4 epidermal layers stacked on top of each other corresponding to a total thickness of around 60 µm, exceeding the theoretical penetration depth of the evanescent wave by a factor of around 20. Altogether, our data indicate a major discrepancy between theory and practice in ATR-FTIR spectroscopy in general and provide strong evidence that in general plant leaf spectra cannot be fully explained by the structure and composition of the cuticle alone.


Subject(s)
Onions , Plant Epidermis , Plant Leaves , Spectroscopy, Fourier Transform Infrared/methods , Onions/chemistry , Onions/cytology , Plant Epidermis/chemistry , Plant Epidermis/cytology , Plant Leaves/chemistry , Plant Leaves/cytology , Principal Component Analysis , X-Ray Microtomography
8.
Biophys J ; 116(11): 2103-2120, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31130234

ABSTRACT

Intramembrane cleavage of the ß-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Proteolysis , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Mutation , Protein Domains
9.
Sci Rep ; 9(1): 5321, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926830

ABSTRACT

Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aß42/Aß40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.


Subject(s)
Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Hydrogen Bonding , Mutation , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Models, Molecular , Protein Conformation , Protein Stability
10.
PLoS One ; 13(7): e0200077, 2018.
Article in English | MEDLINE | ID: mdl-29966005

ABSTRACT

The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/chemistry , Cell Membrane/metabolism , Alzheimer Disease/genetics , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Hydrogen Bonding , Molecular Dynamics Simulation , Mutation , Protein Domains
11.
Biochemistry ; 57(8): 1326-1337, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29389107

ABSTRACT

Flexible transmembrane helices frequently support the conformational transitions between different functional states of membrane proteins. While proline is well known to distort and destabilize transmembrane helices, the role of glycine is still debated. Here, we systematically investigated the effect of glycine on transmembrane helix flexibility by placing it at different sites within the otherwise uniform leucine/valine repeat sequence of the LV16 model helix. We show that amide deuterium/hydrogen exchange kinetics are increased near glycine. Molecular dynamics simulations reproduce the measured exchange kinetics and reveal, at atomic resolution, a severe packing defect at glycine that enhances local hydration. Furthermore, glycine alters H-bond occupancies and triggers a redistribution of α-helical and 310-helical H-bonds. These effects facilitate local helix bending at the glycine site and change the collective dynamics of the helix.


Subject(s)
Glycine/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Protein Conformation , Protein Conformation, alpha-Helical , Water/chemistry
12.
Glia ; 64(4): 635-49, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26683584

ABSTRACT

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon ß-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.


Subject(s)
Brain Injuries/immunology , Brain Ischemia/immunology , Escherichia coli Infections/metabolism , Lipopolysaccharide Receptors/metabolism , Microglia/immunology , Stroke/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Brain/immunology , Brain/pathology , Brain Injuries/complications , Brain Injuries/pathology , Brain Ischemia/pathology , Cells, Cultured , Disease Models, Animal , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/pathology , Feedback, Physiological/physiology , Infarction, Middle Cerebral Artery , Interferon-beta/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharides/toxicity , Macrophages/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Stroke/pathology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
13.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1114-24, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26033354

ABSTRACT

Microfibrillar-associated protein 4 (MFAP4) is localized to elastic fibers in blood vessels and the interalveolar septa of the lungs and is further present in bronchoalveolar lavage. Mfap4 has been previously suggested to be involved in elastogenesis in the lung. We tested this prediction and aimed to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated microcomputed tomography (micro-CT) in 8-mo-old Mfap4(-/-) mice, we found that the mean density of the lung parenchyma was decreased, and the low-attenuation area (LAA) was significantly increased by 14% compared with Mfap4(+/+) mice. Transmission electron microscopy (TEM) did not reveal differences in the organization of elastic fibers, and there was no difference in elastin content, but a borderline significant increase in elastin mRNA expression in 3-mo-old mice. Stereological analysis showed that alveolar surface density in relation to the lung parenchyma and total alveolar surface area inside of the lung were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes.


Subject(s)
Carrier Proteins/genetics , Extracellular Matrix Proteins/genetics , Glycoproteins/genetics , Lung/pathology , Pulmonary Emphysema/genetics , Animals , Elastin/genetics , Elastin/metabolism , Extracellular Matrix Proteins/deficiency , Female , Glycoproteins/deficiency , Lung/metabolism , Lung/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/physiopathology , Respiration , Transcriptome
14.
Food Chem ; 187: 545-54, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-25977062

ABSTRACT

Whereas previous studies showed that thermal pre-treatment of whey proteins promote their enzymatic hydrolysis, to date no correlation between the conformation of denatured protein and the release of individual peptides has been considered. Hence, in this study total denaturation of ß-lactoglobulin was performed at defined pH-values to enable the generation of different denatured particles. The denatured proteins were used as substrate for tryptic hydrolysis and the hydrolysis progress was characterised by the degree of hydrolysis (DH) and the release of functional peptides, detected using LC-ESI-TOF/MS. Denaturation and subsequent aggregation of ß-lactoglobulin, induced by thermal treatment at pH 5.1, altered the DH slightly, whereas the release of investigated peptides was significantly decreased. Contrary, denaturation at pH 6.8 and 8.0 led to formation of non-native monomers and reduced the DH to 75%, but showed promoting as well as reducing effects on the release of peptides, depending on their location within the protein.


Subject(s)
Lactoglobulins/chemistry , Peptides/chemistry , Hot Temperature , Hydrolysis , Mass Spectrometry , Protein Denaturation , Whey Proteins/chemistry
15.
Glia ; 63(6): 1083-99, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25731696

ABSTRACT

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuroprotective Agents/pharmacology , Tyrphostins/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Animals , Cells, Cultured , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Hydrolysis , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/physiology , Myeloid Differentiation Factor 88/metabolism , Neuroprotective Agents/chemistry , Nitriles/chemistry , Nitriles/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Spleen/cytology , Spleen/drug effects , Spleen/physiopathology , Th17 Cells/drug effects , Th17 Cells/pathology , Th17 Cells/physiology , Tyrphostins/chemistry
16.
J Am Coll Nutr ; 33(5): 363-74, 2014.
Article in English | MEDLINE | ID: mdl-25105874

ABSTRACT

OBJECTIVE: Mobile technology can improve lifestyle programs, but the monitoring techniques and carer feedback need to be optimized. To this end, we investigated the efficacy of telemonitoring physical activity and nutrition over 12 months in patients with metabolic syndrome in a randomized, parallel-group, open trial. METHODS: Screening all over Germany yielded 184 patients with metabolic syndrome. All patients attended a single 2-hour instruction meeting in their region concerning a combination diet and the importance of physical activity. Thereafter they were randomized into a control group (controls, n = 62) or one of 2 different intervention groups. Both intervention groups were issued accelerometers, which measured physical activity, recorded daily weight and calorie intake, and transmitted these data to a central server for use by patient carers. In the Active Body Control Program of University of Magdeburg (ABC) intervention group (n = 60), information and motivation was ensured by weekly letters. In the 4sigma telephone coaching (4S) intervention group (n = 58), this was accomplished by monthly telephone calls from the carers. Clinical and biochemical data for all patients were collected at 0, 4, 8, and 12 months without any regular face-to-face meetings between patients and carers. The primary endpoint was weight loss and the secondary endpoint was the presence of metabolic syndrome. RESULTS: After 12 months the dropout rates in the control, 4S, and ABC groups were respectively 35%, 17%, and 18%. The adjusted relative weight losses after 12 months were respectively 3.7%, 8.6%, and 11.4% (all p < 0.000 versus baseline). ABC was more effective than 4S (p = 0.041); 43% of the patients completing the study in the ABC group lost more than 15% of their baseline weight. The diagnosis of metabolic syndrome was no longer applicable in 58% of the cases in the ABC group, in 41% of the 4S group, and in 33% of the controls. CONCLUSIONS: Telemonitoring of physical activity and nutrition markedly improves weight loss and markers of metabolic syndrome.


Subject(s)
Energy Intake , Exercise , Metabolic Syndrome/therapy , Obesity/therapy , Telemedicine/methods , Weight Loss , Weight Reduction Programs , Accelerometry , Adult , Communication , Diet, Reducing , Female , Humans , Male , Middle Aged , Nutritional Status , Patient Dropouts
17.
Infect Immun ; 82(6): 2585-94, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686054

ABSTRACT

Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl-S-glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections.


Subject(s)
Escherichia coli/physiology , Immunity, Innate/physiology , Meningitis, Escherichia coli/physiopathology , Microglia/physiology , Phagocytosis/physiology , Vitamin D Deficiency , Vitamin D/physiology , Analysis of Variance , Animals , Calcifediol/blood , Cell Survival , Cells, Cultured , Chemokines/metabolism , Colony Count, Microbial , Cytokines/metabolism , Disease Models, Animal , Lipopolysaccharides/pharmacology , Meningitis, Escherichia coli/immunology , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/microbiology , Nitric Oxide/metabolism , Toll-Like Receptors/agonists , Vitamin D Deficiency/immunology
18.
Biophys J ; 106(6): 1318-26, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24655507

ABSTRACT

Many transmembrane helices contain serine and/or threonine residues whose side chains form intrahelical H-bonds with upstream carbonyl oxygens. Here, we investigated the impact of threonine side-chain/main-chain backbonding on the backbone dynamics of the amyloid precursor protein transmembrane helix. This helix consists of a N-terminal dimerization region and a C-terminal cleavage region, which is processed by γ-secretase to a series of products. Threonine mutations within this transmembrane helix are known to alter the cleavage pattern, which can lead to early-onset Alzheimer's disease. Circular dichroism spectroscopy and amide exchange experiments of synthetic transmembrane domain peptides reveal that mutating threonine enhances the flexibility of this helix. Molecular dynamics simulations show that the mutations reduce intrahelical amide H-bonding and H-bond lifetimes. In addition, the removal of side-chain/main-chain backbonding distorts the helix, which alters bending and rotation at a diglycine hinge connecting the dimerization and cleavage regions. We propose that the backbone dynamics of the substrate profoundly affects the way by which the substrate is presented to the catalytic site within the enzyme. Changing this conformational flexibility may thus change the pattern of proteolytic processing.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Molecular Dynamics Simulation , Amino Acid Motifs , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Animals , Humans , Hydrogen Bonding , Molecular Sequence Data , Mutation , Protein Structure, Tertiary
19.
Glia ; 62(2): 217-32, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24311453

ABSTRACT

Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons (MN) and their axons, but is also influenced by neighboring cells such as astrocytes and microglial cells. The role of microglia in ALS is complex as it switches from an anti-inflammatory and neuroprotective phenotype in early disease to a proinflammatory and neurotoxic phenotype in later stages. Our previous studies in models of neurodegeneration identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression. Here, we examined the neuroprotective potential of the ROCK inhibitor Fasudil to target the central pathogenic features of ALS. Application of Fasudil to kainic acid-lesioned primary MN in vitro resulted in a strong prosurvival effect. In vivo, SOD1(G93A) mice benefited from oral treatment with Fasudil showing prolonged survival and improved motor function. These findings were correlated to an improved survival of motor neurons and a pronounced alteration of astroglial and microglial cell infiltration of the spinal cord under Fasudil treatment. Modeling a proinflammatory microglial phenotype by stimulation with LPS in vitro, Fasudil decreased the release of proinflammatory cytokines and chemokines TNFα, Il6, CCL2, CCL3, and CCL5 while CXCL1 release was only transiently suppressed. In sciatic nerve motor axons, neuromuscular junction remodeling processes were increased. In conclusion, we provide preclinical and neurobiological evidence that inhibition of ROCK by the clinically approved small molecule inhibitor Fasudil may be a novel therapeutic approach in ALS combining both neuroprotection and immunomodulation for the cure of this devastating disease.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Amyotrophic Lateral Sclerosis/enzymology , Microglia/drug effects , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Axons/drug effects , Axons/pathology , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Spinal Cord/drug effects
20.
PLoS One ; 8(10): e78337, 2013.
Article in English | MEDLINE | ID: mdl-24205203

ABSTRACT

Uromodulin-associated kidney disease (UAKD) summarizes different clinical features of an autosomal dominant heritable disease syndrome in humans with a proven uromodulin (UMOD) mutation involved. It is often characterized by hyperuricemia, gout, alteration of urine concentrating ability, as well as a variable rate of disease progression inconstantly leading to renal failure and histological alterations of the kidneys. We recently established the two Umod mutant mouse lines Umod(C93F) and Umod(A227T) on the C3H inbred genetic background both showing kidney defects analogous to those found in human UAKD patients. In addition, disease symptoms were revealed that were not yet described in other published mouse models of UAKD. To examine if further organ systems and/or metabolic pathways are affected by Umod mutations as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the two mutant mouse lines Umod(A227T) and Umod(C93F) in the German Mouse Clinic. Different genotypes as well as different ages were tested. Beside the already published changes in body weight, body composition and bone metabolism, the influence of the Umod mutation on energy metabolism was confirmed. Hematological analysis revealed a moderate microcytic and erythropenic anemia in older Umod mutant mice. Data of the other analyses in 7-10 month-old mutant mice showed single small additional effects.


Subject(s)
Kidney Diseases/pathology , Mutation/genetics , Uromodulin/genetics , Anemia/genetics , Anemia/pathology , Animals , Energy Metabolism/genetics , Female , Genotype , Kidney Diseases/genetics , Male , Mice, Inbred C3H , Phenotype , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...