Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397911

ABSTRACT

Tissue ischemia, caused by the blockage of blood vessels, can result in substantial damage and impaired tissue performance. Information regarding the functional contribution of the complement system in the context of ischemia and angiogenesis is lacking. To investigate the influence of complement activation and depletion upon femoral artery ligation (FAL), Cobra venom factor (CVF) (that functionally resembles C3b, the activated form of complement component C3) was applied in mice in comparison to control mice. Seven days after induction of muscle ischemia through FAL, gastrocnemius muscles of mice were excised and subjected to (immuno-)histological analyses. H&E and apoptotic cell staining (TUNEL) staining revealed a significant reduction in ischemic tissue damage in CVF-treated mice compared to controls. The control mice, however, exhibited a significantly higher capillary-to-muscle fiber ratio and a higher number of proliferating endothelial cells (CD31+/CD45-/BrdU+). The total number of leukocytes (CD45+) substantially decreased in CVF-treated mice versus control mice. Moreover, the CVF-treated group displayed a shift towards the M2-like anti-inflammatory and regenerative macrophage phenotype (CD68+/MRC1+). In conclusion, our findings suggest that treatment with CVF leads to reduced ischemic tissue damage along with decreased leukocyte recruitment but increased numbers of M2-like polarized macrophages, thereby enhancing tissue regeneration, repair, and healing.

2.
J Acoust Soc Am ; 153(6): 3532-3542, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37387542

ABSTRACT

Previously proposed methods for estimating acoustic parameters from reverberant, noisy speech signals exhibit insufficient performance under changing acoustic conditions. A data-centric approach is proposed to overcome the limiting assumption of fixed source-receiver transmission paths. The obtained solution significantly enlarges the scope of potential applications for such estimators. The joint estimation of reverberation time RT60 and clarity index C50 in multiple frequency bands is studied with a focus on dynamic acoustic environments. Three different convolutional recurrent neural network architectures are considered to solve the tasks of single-band, multi-band, and multi-task parameter estimation. A comprehensive performance evaluation is provided that highlights the benefits of the proposed approach.

3.
J Acoust Soc Am ; 152(6): 3635, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36586844

ABSTRACT

Multi-point room equalization (EQ) aims to achieve a desired sound quality within a wider listening area than single-point EQ. However, multi-point EQ necessitates the measurement of multiple room impulse responses at a listener position, which may be a laborious task for an end-user. This article presents a data-driven method that estimates a spatially averaged room transfer function (RTF) from a single-point RTF in the low-frequency region. A deep neural network (DNN) is trained using only simulated RTFs and tested with both simulated and measured RTFs. It is demonstrated that the DNN learns a spatial smoothing operation: notches across the spectrum are smoothed out while the peaks of the single-point RTF are preserved. An EQ framework based on a finite impulse response filter is used to evaluate the room EQ performance. The results show that while not fully reaching the level of multi-point EQ performance, the proposed data-driven local average RTF estimation method generally brings improvement over single-point EQ.

4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955584

ABSTRACT

Arteriogenesis, the growth of natural bypass blood vessels, can compensate for the loss of arteries caused by vascular occlusive diseases. Accordingly, it is a major goal to identify the drugs promoting this innate immune system-driven process in patients aiming to save their tissues and life. Here, we studied the impact of the Cobra venom factor (CVF), which is a C3-like complement-activating protein that induces depletion of the complement in the circulation in a murine hind limb model of arteriogenesis. Arteriogenesis was induced in C57BL/6J mice by femoral artery ligation (FAL). The administration of a single dose of CVF (12.5 µg) 24 h prior to FAL significantly enhanced the perfusion recovery 7 days after FAL, as shown by Laser Doppler imaging. Immunofluorescence analyses demonstrated an elevated number of proliferating (BrdU+) vascular cells, along with an increased luminal diameter of the grown collateral vessels. Flow cytometric analyses of the blood samples isolated 3 h after FAL revealed an elevated number of neutrophils and platelet-neutrophil aggregates. Giemsa stains displayed augmented mast cell recruitment and activation in the perivascular space of the growing collaterals 8 h after FAL. Seven days after FAL, we found more CD68+/MRC-1+ M2-like polarized pro-arteriogenic macrophages around growing collaterals. These data indicate that a single dose of CVF boosts arteriogenesis by catalyzing the innate immune reactions, relevant for collateral vessel growth.


Subject(s)
Elapid Venoms , Femoral Artery , Animals , Elapid Venoms/metabolism , Elapid Venoms/pharmacology , Femoral Artery/metabolism , Hindlimb/blood supply , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/physiology
5.
Chem Commun (Camb) ; 58(54): 7511-7514, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35708488

ABSTRACT

Structure elucidation via residual dipolar couplings (RDCs) relies on alignment media. We report on lyotropic liquid crystals (LLCs) of poly-γ-p-biphenyl(2'-methoxy-2-methyl)methyl-L-glutamate (PBPM3LG). Temperature dependent atropisomerism within the biphenyl group enables the acquisition of multiple RDC-datasets within one sample.


Subject(s)
Liquid Crystals , Polyglutamic Acid , Liquid Crystals/chemistry , Nuclear Magnetic Resonance, Biomolecular , Polyglutamic Acid/chemistry , Temperature
6.
Cells ; 11(9)2022 04 29.
Article in English | MEDLINE | ID: mdl-35563796

ABSTRACT

γδ T cells, a small subset of T cells in blood, play a substantial role in influencing immunoregulatory and inflammatory processes. The functional impact of γδ T cells on angiogenesis in ischemic muscle tissue has never been reported and is the topic of the present work. Femoral artery ligation (FAL) was used to induce angiogenesis in the lower leg of γδ T cell depleted mice and wildtype and isotype antibody-treated control groups. Gastrocnemius muscle tissue was harvested 3 and 7 days after FAL and assessed using (immuno-)histological analyses. Hematoxylin and Eosin staining showed an increased area of tissue damage in γδ T cell depleted mice 7 days after FAL. Impaired angiogenesis was demonstrated by lower capillary to muscle fiber ratio and decreased number of proliferating endothelial cells (CD31+/BrdU+). γδ T cell depleted mice showed an increased number of total leukocytes (CD45+), neutrophils (MPO+) and neutrophil extracellular traps (NETs) (MPO+/CitH3+), without changes in the neutrophils to NETs ratio. Moreover, the depletion resulted in a higher macrophage count (DAPI/CD68+) caused by an increase in inflammatory M1-like macrophages (CD68+/MRC1-). Altogether, we show that depletion of γδ T cells leads to increased accumulation of leukocytes and M1-like macrophages, along with impaired angiogenesis.


Subject(s)
Endothelial Cells , Ischemia , Animals , Endothelial Cells/pathology , Ischemia/pathology , Leukocyte Count , Macrophages/pathology , Mice , Muscle, Skeletal/pathology
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34769229

ABSTRACT

Strain-related differences in arteriogenesis in inbred mouse strains have already been studied excessively. However, these analyses missed evaluating the mouse strain-related differences in ischemia-induced angiogenic capacities. With the present study, we wanted to shed light on the different angiogenic potentials and the associated leukocyte infiltration of C57BL/6J and SV-129 mice to facilitate the comparison of angiogenesis-related analyses between these strains. For the induction of angiogenesis, we ligated the femoral artery in 8-12-week-old male C57BL/6J and SV-129 mice and performed (immuno-) histological analyses on the ischemic gastrocnemius muscles collected 24 h or 7 days after ligation. As evidenced by hematoxylin and eosin staining, C57BL/6J mice showed reduced tissue damage but displayed an increased capillary-to-muscle fiber ratio and an elevated number of proliferating capillaries (CD31+/BrdU+ cells) compared to SV-129 mice, thus showing improved angiogenesis. Regarding the associated leukocyte infiltration, we found increased numbers of neutrophils (MPO+ cells), NETs (MPO+/CitH3+/DAPI+), and macrophages (CD68+ cells) in SV-129 mice, whereas macrophage polarization (MRC1- vs. MRC1+) and total leukocyte infiltration (CD45+ cells) did not differ between the mouse strains. In summary, we show increased ischemia-induced angiogenic capacities in C57BL/6J mice compared to SV-129 mice, with the latter showing aggravated tissue damage, inflammation, and impaired angiogenesis.


Subject(s)
Hindlimb , Ischemia/metabolism , Macrophages/metabolism , Muscle, Skeletal , Neovascularization, Physiologic , Neutrophils/metabolism , Animals , Hindlimb/blood supply , Hindlimb/metabolism , Male , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Species Specificity
8.
J Vis Exp ; (175)2021 09 30.
Article in English | MEDLINE | ID: mdl-34661568

ABSTRACT

Arteriogenesis strongly depends on leukocyte and platelet recruitment to the perivascular space of growing collateral vessels. The standard approach for analyzing collateral arteries and leukocytes in arteriogenesis is ex vivo (immuno-) histological methodology. However, this technique does not allow the measurement of dynamic processes such as blood flow, shear stress, cell-cell interactions, and particle velocity. This paper presents a protocol to monitor in vivo processes in growing collateral arteries during arteriogenesis utilizing intravital imaging. The method described here is a reliable tool for dynamics measurement and offers a high-contrast analysis with minimal photo-cytotoxicity, provided by multiphoton excitation microscopy. Prior to analyzing growing collateral arteries, arteriogenesis was induced in the adductor muscle of mice by unilateral ligation of the femoral artery. After the ligation, the preexisting collateral arteries started to grow due to increased shear stress. Twenty-four hours after surgery, the skin and subcutaneous fat above the collateral arteries were removed, constructing a pocket for further analyses. To visualize blood flow and immune cells during in vivo imaging, CD41-fluorescein isothiocyanate (FITC) (platelets) and CD45-phycoerythrin (PE) (leukocytes) antibodies were injected intravenously (i.v.) via a catheter placed in the tail vein of a mouse. This article introduces intravital multiphoton imaging as an alternative or in vivo complementation to the commonly used static ex vivo (immuno-) histological analyses to study processes relevant for arteriogenesis. In summary, this paper describes a novel and dynamic in vivo method to investigate immune cell trafficking, blood flow, and shear stress in a hindlimb model of arteriogenesis, which enhances evaluation possibilities notably.


Subject(s)
Leukocytes , Neovascularization, Physiologic , Animals , Femoral Artery , Hindlimb , Intravital Microscopy , Mice
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502391

ABSTRACT

Extracellular Cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released from cells upon hypoxia and cold-stress. The overall absence of extra- and intracellular CIRP is associated with increased angiogenesis, most likely induced through influencing leukocyte accumulation. The aim of the present study was to specifically characterize the role of eCIRP in ischemia-induced angiogenesis together with the associated leukocyte recruitment. For analyzing eCIRPs impact, we induced muscle ischemia via femoral artery ligation (FAL) in mice in the presence or absence of an anti-CIRP antibody and isolated the gastrocnemius muscle for immunohistological analyses. Upon eCIRP-depletion, mice showed increased capillary/muscle fiber ratio and numbers of proliferating endothelial cells (CD31+/CD45-/BrdU+). This was accompanied by a reduction of total leukocyte count (CD45+), neutrophils (MPO+), neutrophil extracellular traps (NETs) (MPO+CitH3+), apoptotic area (ascertained via TUNEL assay), and pro-inflammatory M1-like polarized macrophages (CD68+/MRC1-) in ischemic muscle tissue. Conversely, the number of regenerative M2-like polarized macrophages (CD68+/MRC1+) was elevated. Altogether, we observed that eCIRP depletion similarly affected angiogenesis and leukocyte recruitment as described for the overall absence of CIRP. Thus, we propose that eCIRP is mainly responsible for modulating angiogenesis via promoting pro-angiogenic microenvironmental conditions in muscle ischemia.


Subject(s)
Ischemia/pathology , Neovascularization, Physiologic/physiology , RNA-Binding Proteins/metabolism , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Inflammation/pathology , Ischemia/metabolism , Leukocyte Count , Leukocytes/metabolism , Macrophage Activation , Macrophages/metabolism , Male , Mice , Mice, 129 Strain , Muscles/metabolism , Neutrophils/metabolism , RNA-Binding Proteins/physiology
10.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071589

ABSTRACT

The complement system is a potent inflammatory trigger, activator, and chemoattractant for leukocytes, which play a crucial role in promoting angiogenesis. However, little information is available about the influence of the complement system on angiogenesis in ischemic muscle tissue. To address this topic and analyze the impact of the complement system on angiogenesis, we induced muscle ischemia in complement factor C3 deficient (C3-/-) and wildtype control mice by femoral artery ligation (FAL). At 24 h and 7 days after FAL, we isolated the ischemic gastrocnemius muscles and investigated them by means of (immuno-)histological analyses. C3-/- mice showed elevated ischemic damage 7 days after FAL, as evidenced by H&E staining. In addition, angiogenesis was increased in C3-/- mice, as demonstrated by increased capillary/muscle fiber ratio and increased proliferating endothelial cells (CD31+/BrdU+). Moreover, our results showed that the total number of leukocytes (CD45+) was increased in C3-/- mice, which was based on an increased number of neutrophils (MPO+), neutrophil extracellular trap formation (MPO+/CitH3+), and macrophages (CD68+) displaying a shift toward an anti-inflammatory and pro-angiogenic M2-like polarized phenotype (CD68+/MRC1+). In summary, we show that the deficiency of complement factor C3 increased neutrophil and M2-like polarized macrophage accumulation in ischemic muscle tissue, contributing to angiogenesis.


Subject(s)
Capillaries/physiopathology , Complement C3/deficiency , Ischemia/physiopathology , Leukocytes/metabolism , Muscle, Skeletal/physiopathology , Animals , Capillaries/metabolism , Complement C3/genetics , Disease Models, Animal , Fluorescent Antibody Technique/methods , Humans , Ischemia/genetics , Macrophage Activation , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neutrophil Infiltration , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
11.
Biomedicines ; 9(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916904

ABSTRACT

Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA-chaperone and extracellular promoter of inflammation, which is increasingly expressed and released under conditions of hypoxia and cold stress. The functional relevance of CIRP for angiogenesis and regeneration of ischemic muscle tissue has never been investigated and is the topic of the present study. We investigated the role of CIRP employing CIRP deficient mice along with a hindlimb model of ischemia-induced angiogenesis. 1 and 7 days after femoral artery ligation or sham operation, gastrocnemius muscles of CIRP-deficient and wildtype mice were isolated and processed for (immuno-) histological analyses. CIRP deficient mice showed decreased ischemic tissue damage as evidenced by Hematoxylin and Eosin staining, whereas angiogenesis was enhanced as demonstrated by increased capillary/muscle fiber ratio and number of proliferating endothelial (CD31+/BrdU+) cells on day 7 after surgery. Moreover, CIRP deficiency resulted in a reduction of total leukocyte count (CD45+), neutrophils (myeloperoxidase, MPO+), neutrophil extracellular traps (NETs) (MPO+/CitH3+), and inflammatory M1-like polarized macrophages (CD68+/MRC1-), whereas the number of tissue regenerating M2-like polarized macrophages (CD68+/MRC1-) was increased in ischemic tissue samples. In summary, we show that the absence of CIRP ameliorates angiogenesis and regeneration of ischemic muscle tissue, most likely by influencing macrophage polarization in direction to regenerative M2-like macrophages.

12.
J Acoust Soc Am ; 137(2): EL206-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25698052

ABSTRACT

Human perception of room acoustics depends among others on the time of transition from early reflections to late reverberation in room impulse responses, which is known as mixing time. In this letter, a multi-channel mixing time prediction method is proposed, which in contrast to state-of-the-art channel-based predictors accounts for spatiotemporal properties of the sound field. The proposed diffuseness-based method is compared with existing model- and channel-based prediction methods through measurements and acoustic simulations, and is shown to correlate well with the perceptual mixing time. Furthermore, insights into relations between prediction methods and mixing time definitions based on reflection density are presented.


Subject(s)
Acoustics/instrumentation , Auditory Perception , Facility Design and Construction , Sound , Transducers, Pressure , Equipment Design , Humans , Models, Theoretical , Motion , Pressure , Signal Processing, Computer-Assisted , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...