Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Orthop Trauma Surg ; 133(12): 1675-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24085557

ABSTRACT

INTRODUCTION: Osteoporotic fractures of the distal femur (primary as well as periprosthetic) are a growing problem in today's trauma and orthopaedic surgery. Therefore, this feasibility study should identify the biomechanical potential of a (commercially available) spiral blade in the distal femur as compared to a single screw without any additional plate fixation. Additionally, the influence of cement augmentation was investigated. MATERIALS AND METHODS: An artificial low density bone model was either instrumented with a perforated spiral blade or a 5 mm locking screw only. Additionally, the influence of 1 ml cement augmentation was investigated. All specimens were tested with static pull-out and cyclic loading (50 to 250 N with an increment of 0.1 N/cycle). RESULTS: In the non-augmented groups, the mean pull-out force was significantly higher for the blade fixation (p < 0.001). In the augmented groups, the difference was statistically not significant (p = 0.217). Augmentation could increase pull-out force significantly by 72 % for the blade and 156 % for the screw, respectively (p = 0.001). The mean number of cycles to failure in the non-augmented groups was 12,433 (SD 465) for the blade and 2,949 (SD 215) for the screw, respectively (p < 0.001). In the augmented group, the blade reached 13,967 (SD 1,407) cycles until failure and the screw reached 4,413 (SD 1,598), respectively (p < 0.001). CONCLUSION: The investigated spiral blade was mechanically superior, significantly, as compared to a screw in the distal femur. These results back up the further development of a distal femoral blade with spiral blade fixation for the treatment of osteoporotic distal femur fractures.


Subject(s)
Femoral Fractures/surgery , Fracture Fixation, Internal/instrumentation , Osteoporotic Fractures/surgery , Biomechanical Phenomena , Feasibility Studies , Femoral Fractures/physiopathology , Humans , Osteoporotic Fractures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...