Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861333

ABSTRACT

A series of 44 hybrid compounds that included in their structure tetrahydroquinoline (THQ) and isoxazole/isoxazoline moieties were synthesized through the 1,3-dipolar cycloaddition reaction (1,3-DC) from the corresponding N-allyl/propargyl THQs, previously obtained via cationic Povarov reaction. In vitro cholinergic enzymes inhibition potential of all compounds was tested. Enzyme inhibition assays showed that some hybrids exhibited significant potency to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Especially, the hybrid compound 5n presented the more effective inhibition against AChE (4.24 µM) with an acceptable selectivity index versus BChE (SI: 5.19), while compound 6aa exhibited the greatest inhibition activity on BChE (3.97 µM) and a significant selectivity index against AChE (SI: 0.04). Kinetic studies were carried out for compounds with greater inhibitory activity of cholinesterases. Structure-activity relationships of the molecular hybrids were analyzed, through computational models using a molecular cross-docking algorithm and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy approach, which indicated a good correlation between the experimental inhibition values and the predicted free binding energy.


Subject(s)
Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Isoxazoles/chemistry , Quinolines/chemistry , Acetylcholinesterase/chemistry , Binding Sites , Catalytic Domain , Chemistry Techniques, Synthetic , Cholinesterase Inhibitors/chemical synthesis , Enzyme Activation/drug effects , Humans , Hydrogen Bonding , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
2.
Chem Biol Interact ; 302: 164-171, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30738022

ABSTRACT

New molecular hybrids were synthesized by combining tetrahydroquinoline (THQ) and isoxazole (ISX) scaffolds, in search for chemical structures with improved pharmacological properties. Our tetrahydroquinoline (THQ) and isoxazole (ISX) hybrids differ in the X and Y substituents: FM53 (X = H; Y= H), FM49 (X = CH3; Y= OCH3), FM50 (X = Cl; Y= H) and FM48 (X = Cl; Y= OCH3). Aiming at exploring their bioactivity in liver cancer cells, in this paper we report the effect of four THQ-ISX hybrids on viability, respiration and oxidative stress in Hep-G2 human hepatoma cells. In addition, we measured the alterations induced by these compounds on oxygen uptake and respiratory chain enzymes in isolated mitochondria. Cell viability assay indicated that these THQ-ISX hybrids displayed antiproliferative activity on Hep-G2 cells. Among these, FM50 (IC50 = 5.2 ±â€¯1.9 µM) and FM53 (IC50 = 6.8 ±â€¯0.7 µM) had the highest cytotoxicity. These four hybrids also inhibited the Hep-G2 cells respiration in the uncoupled state, with FM50 decreasing all respiratory states (basal, leak, uncoupled). While only FM49 and FM53 altered the Hep-G2 cells redox function. In terms of mitochondrial bioenergetics, THQ-ISX hybrids decreased the oxygen consumption in state 3 (via complex I and II), and also inhibited NADH oxidase and NADH cytochrome c reductase enzyme activities. In these experiments, the structural homologues FM50 and FM53 had a remarkable inhibitory effect (~50%) with respect to FM49 and FM48. These results show that THQ-ISX hybrids are promising compounds for hepatoma cancer treatment and that the phenyl substituent (Y= H) in the ISX scaffold intensifies both, the cytotoxicity in Hep-G2 cells and, inhibition of electron transport through complex I of the mitochondrial respiratory chain.


Subject(s)
Energy Metabolism/drug effects , Isoxazoles/chemistry , Mitochondria, Liver/metabolism , Quinolines/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Survival/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
3.
Chem Biol Drug Des ; 88(4): 498-510, 2016 10.
Article in English | MEDLINE | ID: mdl-27085663

ABSTRACT

New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 µm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 µm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets.


Subject(s)
Alkynes/chemical synthesis , Choline/analogs & derivatives , Computer Simulation , Quinolines/chemical synthesis , Alkynes/chemistry , Alkynes/pharmacology , Binding Sites , Cations , Choline/chemical synthesis , Choline/chemistry , Choline/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cycloaddition Reaction , Enzyme Activation/drug effects , Humans , Kinetics , Quinolines/chemistry , Quinolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...