Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e33328, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021980

ABSTRACT

This review paper addresses the critical need for advanced rice disease detection methods by integrating artificial intelligence, specifically convolutional neural networks (CNNs). Rice, being a staple food for a large part of the global population, is susceptible to various diseases that threaten food security and agricultural sustainability. This research is significant as it leverages technological advancements to tackle these challenges effectively. Drawing upon diverse datasets collected across regions including India, Bangladesh, Türkiye, China, and Pakistan, this paper offers a comprehensive analysis of global research efforts in rice disease detection using CNNs. While some rice diseases are universally prevalent, many vary significantly by growing region due to differences in climate, soil conditions, and agricultural practices. The primary objective is to explore the application of AI, particularly CNNs, for precise and early identification of rice diseases. The literature review includes a detailed examination of data sources, datasets, and preprocessing strategies, shedding light on the geographic distribution of data collection and the profiles of contributing researchers. Additionally, the review synthesizes information on various algorithms and models employed in rice disease detection, highlighting their effectiveness in addressing diverse data complexities. The paper thoroughly evaluates hyperparameter optimization techniques and their impact on model performance, emphasizing the importance of fine-tuning for optimal results. Performance metrics such as accuracy, precision, recall, and F1 score are rigorously analyzed to assess model effectiveness. Furthermore, the discussion section critically examines challenges associated with current methodologies, identifies opportunities for improvement, and outlines future research directions at the intersection of machine learning and rice disease detection. This comprehensive review, analyzing a total of 121 papers, underscores the significance of ongoing interdisciplinary research to meet evolving agricultural technology needs and enhance global food security.

2.
Ann Oper Res ; : 1-25, 2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36591406

ABSTRACT

The coronavirus first appeared in China in 2019, and the World Health Organization (WHO) named it COVID-19. Then WHO announced this illness as a worldwide pandemic in March 2020. The number of cases, infections, and fatalities varied considerably worldwide. Because the main characteristic of COVID-19 is its rapid spread, doctors and specialists generally use PCR tests to detect the COVID-19 virus. As an alternative to PCR, X-ray images can help diagnose illness using artificial intelligence (AI). In medicine, AI is commonly employed. Convolutional neural networks (CNN) and deep learning models make it simple to extract information from images. Several options exist when creating a deep CNN. The possibilities include network depth, layer count, layer type, and parameters. In this paper, a novel Xception-based neural network is discovered using the genetic algorithm (GA). GA finds better alternative networks and parameters during iterations. The best network discovered with GA is tested on a COVID-19 X-ray image dataset. The results are compared with other networks and the results of papers in the literature. The novel network of this paper gives more successful results. The accuracy results are 0.996, 0.989, and 0.924 for two-class, three-class, and four-class datasets, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...