Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(8): 5353-5362, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38564378

ABSTRACT

Catalyst-free Markovnikov-selective hydrothiolation of unactivated alkenes still remains a great challenge. Herein, we develop a catalyst/metal/solvent-free methodology for the Markovnikov hydrothiolation of unactivated alkenes with in situ prepared dithiocarbamic acids, providing a wide array of alkyl dithiocarbamates. A variety of terminal, internal, cyclic, and acyclic unactivated alkenes were applied successfully in this protocol. This three-component thiol-ene reaction can be considered as a new family of click reactions.

2.
Environ Sci Pollut Res Int ; 31(19): 27913-27934, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38523213

ABSTRACT

Today, new energy sources alternative to fossil fuels are needed to meet the increasing energy demand. It is becoming increasingly important to constitute new energy sources from waste biomass through the liquefaction process. In this study, walnut shells (WS) were liquefied catalytically and non-catalytically under different parameters using the liquefaction method. In this process, the effect of silica fume/nano zero-valent iron (SF/NZVI) catalysts on the conversion rates was investigated. The catalyst was synthesized by reducing NZVI using a liquid phase chemical reduction method on SF. The SF/NZVI catalyst was characterized by scanning electron microscopy- energy dispersive X-ray (SEM-EDX), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. The effect of various process parameters on the liquefaction process was investigated. In this context, the reaction temperature ranged from 300 to 400 °C, the solid/solvent ratio ranged from 1/1 to 1/3, the reaction time ranged from 30 to 90 min, and the catalyst concentration ranged from 1 to 6%. According to the results obtained, the most suitable operating conditions for non-catalytic experiments in liquefaction of WS were found to be temperature of 400 °C, reaction time of 60 min, and solid/solvent of 1/3. In catalytic conditions, the optimum values were obtained as temperature of 375 °C, reaction time of 60 min, solid/solvent ratio of 1/3, and catalyst concentration of 6%. The highest total conversion and (oil + gas) % conversion were 90.4% and 46.7% under non-catalytic conditions and 90.7% and 62.3% under catalytic conditions, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the bio-oil was mainly composed of aromatic compounds (benzene, butyl-, indane and their derivatives,) and polyaromatic compounds (naphthalene, decahydro-, cis-, naphthalene, 1-methyl-.). The aim of increasing the quantity and quality of the light liquid product in the study has been achieved.


Subject(s)
Iron , Plant Oils , Polyphenols , Catalysis , Iron/chemistry , Biofuels , X-Ray Diffraction , Silicon Dioxide/chemistry , Juglans/chemistry , Biomass
3.
Heliyon ; 8(9): e10636, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36158104

ABSTRACT

In this study, Yatagan lignite (YL) and peach kernel shells (PKS) were originally taken separately and in a 1: 1 ratio by weight. Experiments were carried out in a 3-zone heated cylindrical furnace in a steel reactor. Structural characterization of all the solid products obtained was made by FTIR, XRD, and SEM analysis. When the FTIR and XRD spectra of the raw samples are examined, it is seen that they are rich in functional groups. It is seen that the PKS has aliphatic and aromatic structures and cellulosic structure -OH stresses (3500 cm-1). The sharp peak around 2918 cm-1 in Yatagan lignite belongs to the aliphatic C-H stretch. In the XRD spectrum, it is seen that both structures are largely amorphous. The raw PKS contains 3 different amorphous macromolecular structures. Yatagan lignite, on the other hand, contains crystalline peaks of clay and inorganic structures, depending on the ash content, as well as the amorphous structure. As the temperature increases depending on the carbonization temperature, as seen in the FTIR spectrum, the peaks of the functional groups decrease and disappear with the disruption of small macromolecular structures. As a result of the structural adjustment with the temperature increase, M-O-M peaks around 1000 cm-1 remain due to the aromatic C-H stretching and ash content. The paper centers around test assurance of operating temperatures in the consuming layer during co-carbonization. It is obtained that 800 °C is the best temperature condition for the co-carbonization process. It has been concluded that the chars obtained as a result of pyrolysis will be used as a solid fuel in both environmental (the lowest sulfur content) and economic (400 °C) sense. However, the fact that it has a very low sulfur content with the increase in the liquid and gas efficiency obtained at high temperatures again proves the production of an environmentally friendly liquid fuel.

SELECTION OF CITATIONS
SEARCH DETAIL
...