Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38746209

ABSTRACT

Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.

2.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38187619

ABSTRACT

Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is linked to major respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. Our study fills this crucial knowledge gap and for the first time (1) maps the distribution of ciliated and secretory cell types on the mucosal surface along the proximo-distal axis of the rat and human airway tree, (2) identifies species-specific differences in ciliary beat and clearance function, and (3) elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. Our broad range of experimental approaches and physics-based modeling translate into generalizable parameters to quantitatively benchmark the human-relevancy of mucociliary clearance in experimental models, and to characterize distinct disease states.

3.
iScience ; 24(9): 103061, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34585112

ABSTRACT

Complex human airway cellular organization where extracellular matrix (ECM) and epithelial and stromal lineages interact present challenges for organ study in vitro. Current in vitro lung models that focus on the lung epithelium do not represent complex airway morphology and cell-ECM interactions seen in vivo. Models including stromal populations often separate them via a semipermeable barrier precluding cell-cell interaction or the effect of ECM mechanics. We investigated the effect of stromal cells on basal epithelial cell-derived bronchosphere structure and function through a triple culture of human bronchial epithelial, lung fibroblast, and airway smooth muscle cells. Epithelial-stromal cross-talk resulted in epithelial cell-driven branching tubules with stromal cells surrounding epithelial cells termed bronchotubules. Agarose- Matrigel scaffold (Agrigel) formed a mechanically tuneable ECM, with adjustable viscoelasticity and stiffness enabling long-term tubule survival. Bronchotubule models may enable research into how epithelial-stromal cell and cell-ECM communication drive tissue patterning, repair, and development of disease.

4.
Cancer Res ; 71(13): 4412-22, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21571862

ABSTRACT

Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer.


Subject(s)
Cisplatin/pharmacology , Histone Deacetylases/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Repressor Proteins/metabolism , STAT1 Transcription Factor/metabolism , Acetylation , Animals , Cell Nucleus/metabolism , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Gene Knockdown Techniques , Genes, BRCA1 , Genes, BRCA2 , Histone Deacetylases/genetics , Humans , Ovarian Neoplasms/genetics , Phosphorylation , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...