Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Int J Radiat Biol ; 100(5): 715-723, 2024.
Article in English | MEDLINE | ID: mdl-38421209

ABSTRACT

PURPOSE: DNA damage response (DDR) is the principal mechanism regulating genomic stability and cell cycle checkpoint activation by coordinating DNA repair and apoptotic pathways. Ataxia telangiectasia and Rad3-related protein (ATR) play a significant role in the DDR due to its capability to detect a wide spectrum of DNA damage. Therefore, targeting DDR, specifically ATR, is a promising therapeutic strategy in cancer treatment. Furthermore, the inhibition of ATR sensitizes cancer cells to radiotherapy (RT). Herein, we, for the first time, investigated the synergistic effects of Elimusertib (BAY-1895344) as a highly potent selective ATR inhibitor with RT combination in triple-negative breast cancer (TNBC), in vitro. METHODS: MDA-MB-231 TNBC cells were firstly treated with different concentrations of Elimusertib for 24 h and then exposed to 4 and 8 Gy of X-ray irradiation. After post-irradiation for 72 h, WST-1, Annexin V, cell cycle, acridine orange/propidium iodide, mitochondria staining and western blot analysis were conducted. RESULTS: Our findings showed that 4 Gy irradiation and lower doses (especially 2 and 4 nM) of Elimusertib combination exerted a considerable anticancer activity at 72 h post-irradiation through apoptotic cell death, marked nuclear and mitochondrial damages and the suppression of ATR-Chk1 based DDR mechanism. CONCLUSION: ATR inhibition by Elimusertib in combination with RT may be a promising new treatment strategy in the treatment of TNBC. However, further experiments should be performed to elucidate the underlying molecular mechanisms of the therapeutic efficacy of this combination treatment and its association with DNS repair mechanisms in TNBC, in vitro and in vivo.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Radiation Tolerance , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Radiation Tolerance/drug effects , Apoptosis/drug effects , Apoptosis/radiation effects , Female , DNA Damage
2.
Clinics (Sao Paulo) ; 78: 100271, 2023.
Article in English | MEDLINE | ID: mdl-37639911

ABSTRACT

AIM: This study aimed to evaluate the expression levels of miR-99b and miR-135b in peritoneal carcinoma and liver metastases associated with Colorectal Cancer (CRC), assess their association with the intracellular signaling pathway proteins Kirsten Rat Sarcoma Virus (KRAS) and Akt, and investigate their effects on survival. MATERIALS AND METHODS: Changes in the KRAS gene and Akt proteins, expression levels of miR-99b and miR-135b, and factors affecting survival were compared between colorectal cancer-associated peritoneal carcinomatosis and liver metastasis. RESULTS: The expression levels of miR-99b and miR-135b and the immunohistochemical grade classification score of Akt were higher in colorectal cancer, peritoneal carcinomatosis, and liver metastasis than in normal tissues (p < 0.05). MiR-99b expression was highest in CRC, whereas miR-135b expression was highest in peritoneal carcinomatosis (p < 0.05). The expression level of miR-99b decreased and that of miR-135b increased in peritoneal and liver metastases compared with that in the tumor tissue. MiR-99b, Akt, and recurrence were risk factors that affected the overall survival rate in the model of clinical predictions (p = 0.045, p = 0.006, and p = 0.012, respectively). CONCLUSION: While the expression of miR-99b was highest in the primary tumor, its decrease in liver metastasis and peritoneal carcinomatosis suggests that miR-99b has a protective effect against liver metastasis and peritoneal carcinomatosis. However, the detection of miR-135b expression was highest in peritoneal carcinomatosis and liver metastasis compared with that in the colorectal cancer tissues suggesting that it facilitates peritoneal carcinomatosis and liver metastasis. Furthermore, miR-99b, KRAS mutations, and Akt are risk factors for the overall survival of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , MicroRNAs , Peritoneal Neoplasms , Humans , Colorectal Neoplasms/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Peritoneal Neoplasms/genetics , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras)/genetics
3.
Am J Transl Res ; 15(7): 4902-4911, 2023.
Article in English | MEDLINE | ID: mdl-37560219

ABSTRACT

OBJECTIVES: Genomic instability in cancer cells is based on the aberrant activation of deoxyribonucleic acid (DNA) damage response and repair mechanisms. Targeting Ataxia telangiectasia and Rad3-related (ATR) inhibition in cancer treatment have attracted attention in recent years. In the current study, we aimed for the first time to determine the anti-cancer effects of Elimusertib, an ATR inhibitor, on triple negative breast cancer (TNBC). METHODS: The cytotoxic and apoptotic effects of Elimusertib were analyzed by Water-Soluble Tetrazolium 1 (WST-1), Annexin V, cell cycle and acridine orange/propidium iodide staining. Furthermore, Elimusertib induced mitochondrial damage and the intracellular reactive oxygen species were evaluated. Additionally, the inhibition of ATR-Checkpoint kinase 1 (Chk1) DNA damage response and the induction of apoptotic death was analyzed by western blot analysis. RESULTS: Our preliminary findings revealed that Elimusertib significantly decreased the viability of MDA-MB-231 TNBC cells with toxicity in MCF-10A cells (P<0.05). Elimusertib caused apoptotic death through gap phase (G0)/growth 1 phase (G1) accumulation, caspase-3 activity and mitochondrial damage. Additionally, Elimusertib significantly suppressed the ATR-based DNA damage response and mediated cell cycle checkpoint. CONCLUSIONS: Our findings suggest that Elimusertib suppresses the ATR-based Chk1 pathway in TNBC cells. Therefore, ATR inhibition by Elimusertib could be a potential therapeutic strategy especially in tumor protein p53 (p53) mutant TNBC patients.

4.
Chem Biodivers ; 20(3): e202201263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36806913

ABSTRACT

Honeybees provide multiple products such as bee venom (BV) which are used for various nutritional and medicinal purposes. BV has received great attention due to its wide range of bioactive components with potential anti-cancer effects on different cancers. Triple negative breast cancer (TNBC) is defined as an aggressive type of breast cancer and new therapeutic targets are required for its treatment. In the current literature information is varied about the composition and quantity of BV bioactive compounds as well as the origin of BV and its significance. In this context, the cytotoxic and apoptotic effects of BV with a higher rate of mellitin from Apis mellifera anatoliaca (Mugla ecotype) on MDA-MB-231 cells was evaluated, in vitro. The cytotoxic, apoptotic and morphological effects of BV were determined by WST-1, Annexin V, cell cycle analysis and Acridine Orange staining. The results showed that BV caused apoptotic cell death in TNBC cells at a lower dose (0.47 µg/mL, p<0.01). This study suggests that BV could be developed as a potential therapeutic agent for cancer treatment. However, the mechanism of BV-induced apoptosis death should be clarified at the molecular level.


Subject(s)
Antineoplastic Agents , Bee Venoms , Triple Negative Breast Neoplasms , Humans , Bees , Animals , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor
5.
Lasers Med Sci ; 38(1): 70, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36780027

ABSTRACT

Canine mammary sarcoma tumors (CMST) are the most aggressive tumors with poor prognosis in dogs. Due to inadequate treatment options for CMST, recent studies have focused on alternative treatment strategies. We previously determined the optimized protocol of 5-ALA-based photodynamic therapy (PDT) in canine liposarcoma. However, its molecular mechanisms in the treatment of different histological types of CMST remain unclear.In this context, we, for the first time, assessed 5-aminolevulinic acid (5-ALA)-PDT-mediated anti-cancer activity and its molecular mechanism after continuous wave (CW) and pulse radiation (PR) on three different histological types (liposarcoma, chondrosarcoma, and osteosarcoma) of CMST cells by WST-1, Annexin V, ROS, acridine orange/propidium iodide staining, RT-PCR, and western blot analysis.Our findings showed that 5-ALA/PDT significantly suppressed the proliferation of CMST cells (p < 0.01) and induced apoptosis via increased ROS level and overexpression of Caspase-9 and Caspase-3 mRNA and cleaved protein levels in especially liposarcoma and chondrosarcoma cells following CW and PR irradiation at 9 J/cm2. However, the response of CMST cells to 5-ALA was different upon CW and PR irradiation due to differences in their origin.Collectively, our findings provided the first evidence that 5-ALA-based PDT could be used as an alternative treatment strategy, especially liposarcoma and chondrosarcoma. However, further in vitro and in vivo studies are required to elucidate the underlying molecular mechanism of the efficacy of 5-ALA in CMST cells at the molecular level.


Subject(s)
Chondrosarcoma , Liposarcoma , Photochemotherapy , Sarcoma , Dogs , Animals , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Reactive Oxygen Species/metabolism , Photochemotherapy/methods , Cell Line, Tumor , Apoptosis/radiation effects , Liposarcoma/drug therapy , Liposarcoma/genetics , Liposarcoma/radiotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
6.
Clin. transl. oncol. (Print) ; 25(2): 460-472, feb. 2023.
Article in English | IBECS | ID: ibc-215945

ABSTRACT

Purpose Cancer cell-derived exosomes are the mediator of the tumor microenvironment and the molecular content of exosomes presents a promising prognostic or predictive marker in tumor progression and the treatment response of cancer patients. The aim of this study was to identify the expression levels of receptor tyrosine kinases (RTKs) and AKT1 and mTOR before and after neoadjuvant chemotherapy (NACT) in the exosomes of BC patients compared with healthy females. Methods After isolating exosomes in the serum of 25 BC patients and characterization by flow cytometry, the mRNA levels of FGFR2, FGFR3, PDGFRB, AKT1 and mTOR in the exosomes were analyzed by RT-PCR. Results Our preliminary findings showed that FGFR2, PDGFRB, AKT1 and mTOR levels were significantly upregulated in BC patients before NACT compared with the healthy group (p < 0.05). Furthermore, the mRNA levels PDGFRB and AKT1 were significantly down-regulated after NACT compared with control. PDGFRB expression level could predict pathological non-response and significantly correlated with tumor size after NACT. Conclusion Therefore, especially FGFR2, PDGFRB and AKT1 could be a therapeutic target as a prognostic marker, whereas PDGFRB may be a promising predictive indicator of therapy response in BC patients. However, the prognostic or predictive role of RTKs and PI3K/AKT/mTOR signaling in the exosomes should be further investigated in a large patient population (AU)


Subject(s)
Humans , Female , Receptors, Platelet-Derived Growth Factor/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy , Phosphatidylinositol 3-Kinase/metabolism , Prognosis , Proto-Oncogenes , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Receptor Protein-Tyrosine Kinases , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
7.
J Immunoassay Immunochem ; 44(2): 192-203, 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36656054

ABSTRACT

Hepatitis B virus (HBV) infection is a global health problem leading to cirrhosis, hepatocellular carcinoma, and liver failure. The Hepatitis B vaccine plays a significant role in reducing the incidence of HBV worldwide. Approximately 5-10% of vaccinated people do not produce protective antibody levels. Nuclear factor kappa B (NF­κB) mediates inflammatory responses through pro-inflammatory cytokines. However, the role of the NF­κB signaling pathway and its association with pro-inflammatory cytokines in hepatitis B vaccine response is unclear. We aimed to assess changes in the IL1A, IL6, IL12A, TNF-α, and NFκB1 expression levels in the non-responder and responder. A total of 32 non-responders and 36 responders were included in the study. The expression level of determined genes was analyzed by RT-PCR. Our results showed that IL1A, IL6, IL12A, and NFκB1 mRNA levels significantly increased in the non-responders compared to the responders (p < .01). Furthermore, there was a significant correlation between IL1A, IL6, TNF-α, and NFκB1 in the non-responder and responders. In conclusion, inflammatory signaling pathways may play an important role in response to HBV vaccine. Therefore, NF­κB signaling and associated pro-inflammatory cytokine mRNA levels could predict hepatitis B vaccine response. However, the underlying molecular mechanisms of hepatitis B vaccine immunity need further investigation.


Subject(s)
Cytokines , Hepatitis B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Hepatitis B Vaccines , Tumor Necrosis Factor-alpha , Interleukin-6 , Hepatitis B virus
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 1031-1041, 2023 05.
Article in English | MEDLINE | ID: mdl-36598514

ABSTRACT

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors provide promising results for treating hormone receptor-positive breast cancer. However, the efficacy of CDK4/6 inhibitors remains uncertain in triple negative breast cancer (TNBC) patients with particularly carrying RB-deficient tumors. Poly-(ADP-ribose) polymerase (PARP) inhibitors offer a therapeutic strategy for the treatment of BRCA-mutated TNBC patients. However, the acquired drug resistance, changes in the cell cycle regulation, and DNA damage repair have demonstrated the necessity for developing new combination strategies. This preclinical study assessed a combinatory treatment of the CDK4/6 inhibitor abemaciclib with PARP inhibitors talazoparib (TAL) in HCC1937 BRCA-mutated RB-deficient TNBC cells and TAL-resistant HCC1937-R cells through WST-1 analysis, annexin V, cell cycle, acridine orange/propidium iodide staining, RT-PCR, and apoptosis array. Our findings revealed that abemaciclib and TAL combination synergistically suppressed the growth of TNBC cells and overcame TAL resistance through G0/G1 arrest and the activity of both intrinsic and extrinsic apoptotic pathways. These preliminary results suggest that the combination of abemaciclib and TAL could expand the use of these inhibitors in BRCA mutated and RB deficient TNBC patients and potentially overcomes PARP inhibitors resistance.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Cell Line, Tumor
9.
Clin Transl Oncol ; 25(2): 460-472, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36181664

ABSTRACT

PURPOSE: Cancer cell-derived exosomes are the mediator of the tumor microenvironment and the molecular content of exosomes presents a promising prognostic or predictive marker in tumor progression and the treatment response of cancer patients. The aim of this study was to identify the expression levels of receptor tyrosine kinases (RTKs) and AKT1 and mTOR before and after neoadjuvant chemotherapy (NACT) in the exosomes of BC patients compared with healthy females. METHODS: After isolating exosomes in the serum of 25 BC patients and characterization by flow cytometry, the mRNA levels of FGFR2, FGFR3, PDGFRB, AKT1 and mTOR in the exosomes were analyzed by RT-PCR. RESULTS: Our preliminary findings showed that FGFR2, PDGFRB, AKT1 and mTOR levels were significantly upregulated in BC patients before NACT compared with the healthy group (p < 0.05). Furthermore, the mRNA levels PDGFRB and AKT1 were significantly down-regulated after NACT compared with control. PDGFRB expression level could predict pathological non-response and significantly correlated with tumor size after NACT. CONCLUSION: Therefore, especially FGFR2, PDGFRB and AKT1 could be a therapeutic target as a prognostic marker, whereas PDGFRB may be a promising predictive indicator of therapy response in BC patients. However, the prognostic or predictive role of RTKs and PI3K/AKT/mTOR signaling in the exosomes should be further investigated in a large patient population.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Neoadjuvant Therapy , Receptor, Platelet-Derived Growth Factor beta/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Receptor Protein-Tyrosine Kinases , RNA, Messenger , Tyrosine/therapeutic use , Tumor Microenvironment
10.
J Invest Surg ; 35(7): 1544-1550, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636767

ABSTRACT

OBJECTIVE: We investigated the serum levels of MMPs and TIMPs in breast cancer (BC) patients to predict the response rate to/after treatment with or without neoadjuvant chemotherapy. BC is the most common cancer in women and MMPs are responsible for the breakdown of ECM proteins during organogenesis and TIMPs are restricted the ECM destruction by MMPs. However, the predictive role of MMPs and TIMPs in the treatment response of BC patients has not identified. METHODS: This study consisted of 96 BC patients (34 neoadjuvant treatment and 62 surgically treated) and 35 healthy individuals. ELISA was used to determine the level of MMP-2, MMP-9, TIMP-1, and TIMP-2 from serum samples of BC patients. RESULTS: The mean levels of MMP-9 and TIMP-2 were significantly increased in all BC patients at diagnosis and after chemotherapy, but MMP-2 was considerably lower at diagnosis. There was only a significant difference in the TIMP-1 levels after chemotherapy as well as HER2 and ER status in the neoadjuvant and surgically treated group. Additionally, MMP-2 and MMP-9 serum levels negatively correlated with tumor size and metastatic lymph nodes in BC patients after chemotherapy. CONCLUSIONS: BC patients with high levels of MMP-9 and TIMP-2 can be used to predict the stage of the tumor and CR to chemotherapy and higher TIMP-1 serum level after chemotherapy could be related to better response to chemotherapy.


Subject(s)
Breast Neoplasms , Tissue Inhibitor of Metalloproteinase-1 , Breast Neoplasms/drug therapy , Female , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
11.
Int J Biol Macromol ; 198: 175-186, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973989

ABSTRACT

This study was planned to evolve the bioavailability and therapeutic efficiency of Gemcitabine (GEM) and 5-Fluorouracil with decreased side effects using MIL-100 nano-composite as carrier. Impregnation approach was used for encapsulation of 5-Fluorouracil alone and with GEM inside the MIL-100. The formed 5-Fluorouracil@MIL-100 and 5-Fluorouracil-GEM@MIL-100 were then coated with chitosan, sequentially chelated with iron(III) and conjugated with quercetin, eventually obtaining a multifunctional MIL-100 nanocarrier. The hybrid nanocarrier nascency was verified by different characterization results. pH-sensitive releases of 5-Fluorouracil and GEM were observed because of the inherent pH-dependent stability of MIL-100. Additionally, we evaluated the anti-cancer activity of these nanocarriers through WST-1 analysis and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. Our findings showed that all nanocarriers exhibited anti-cancer activity and induced apoptosis in MCF-7 cells. However, 5-Fluorouracil@MIL-100 and chitosan-coated 5-Fluorouracil@MIL-100 with quercetin were more effective than other nanocarriers in MCF-7 cells (p < 0.05). Moreover, we observed cytotoxicity in HUVEC cells due to the adverse side effects of chemotherapy drugs. However, chitosan coated nanocarriers with quercetin were less toxic on HUVEC cells at particularly 1 µg/mL. Therefore, MIL-100 could be used for a promising chemotherapeutic drugs delivery and chitosan coated drugs with quercetin could be useful for reducing toxicity on normal cells.


Subject(s)
Chitosan
12.
Hum Hered ; 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991090

ABSTRACT

INTRODUCTION: The CHEK2 gene is known to be an important signal transducer involved in DNA repair, apoptosis, or cell cycle arrest in response to DNA damage. The mutations in this gene have been associated with a wide range of cancers, both sporadic and hereditary. Germline CHEK2 mutations are linked to an increased risk of breast cancer. Therefore, the aim of this study was to identify the prevalence of CHEK2 variants in BRCA1/2 and PALB2 negative early-onset patients with breast cancer and/or ovarian cancer in a Turkish population for the first time. METHODS: The study included 95 patients with BRCA1/2 and PALB2 negative early-onset breast cancer and/or ovarian cancer and also 60 unaffected women. All the intron/exon boundaries and coding exons of CHEK2 were subjected to mutational analysis by heteroduplex analysis and DNA sequencing. RESULTS: A total of 16 CHEK2 variants were found in breast cancer patients within the Turkish population. CHEK2 c.1100delC mutation studied in the CHEK2 gene most frequently was not detected in our study. The prevalence of variants of uncertain significance in CHEK2 was found to be 7.3% (n= 7) in BRCA1/2 and PALB2 mutation negative Turkish patients with early-onset breast and/or ovarian cancer. DISCUSSION/CONCLUSION: The present study may shed light on alternative variations that could be significant for understanding the prevalence and clinical suitability of the CHEK2 gene.

13.
Nutr Cancer ; 74(8): 3015-3025, 2022.
Article in English | MEDLINE | ID: mdl-35089107

ABSTRACT

Canine mammary gland tumors (CMGTs) are the most frequent types of cancer in bitches and proposed as a model of human breast cancer. The anticancer effect of curcumin on human breast cancer has been extensively studied. The aim of this study was to evaluate the therapeutic effect of curcumin in two different histologies (simple carcinoma [SC] and squamous cell carcinoma [SCC]) of CMGTs. Primary canine mammary cells were isolated from the tumoral tissues surgically resected from two bitches (Case 1 and Case 2). Cell viability, apoptotic percentage, cell cycle progression and the changes in the cell morphology were evaluated. Curcumin inhibited the growth of both SC (Case 1) and SCC (Case 2) cells. However, Case 1 cells (43.48% ± 3.87% at 0.5 µM) were more sensitive to curcumin than Case 2 cells (59.36% ± 2.09% at 0.5 µM). Curcumin induced total apoptotic cell death through G0/G1 arrest, and this effect was more profound in Case 1 cells. Furthermore, cytoplasmic vacuolization, apoptotic bodies and membrane blebbing were observed in both cells following curcumin treatment. Our findings provide a novel approach for the effects of curcumin as a natural compound on CMGTs. Further investigations should be performed to investigate the molecular mechanisms of the differences in curcumin efficacy for different histological subtypes.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Squamous Cell , Curcumin , Mammary Glands, Human , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Breast Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Dogs , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology
14.
Cell Signal ; 91: 110229, 2022 03.
Article in English | MEDLINE | ID: mdl-34958867

ABSTRACT

Poly (ADP-ribose) polymerase (PARP) inhibitors provide a promising therapeutic strategy for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, acquire resistance mechanisms and genetic alterations limit the clinical efficacy of PARP inhibitors. The aberrant activation of phosphatidylinositol 3-kinase (PI3K) is a significant problem for cancer development and thus the inhibition of PI3K by PI3K inhibitors is a novel targeted therapy in advanced breast cancer. Here, we, for the first time, investigated that the combined inhibition of PARP by Talazoparib (TAL) and PI3K by LY294002 synergistically inhibited proliferation of BRCA1 mutant HCC1937 TNBC cells through apoptosis, G0/G1 arrest, oxidative stress and increased DNA damage compared to drug alone. Additionally, TAL and LY294002 combination could be a promising strategy for overcoming TAL resistance. Co-treatment of TAL with LY294002 considerably suppressed the activation of PI3K, Akt1 and mTOR expression and phosphorylated protein levels in TNBC cells and caused changes in the multiple kinase phosphorylation. Our findings revealed that the dual inhibition of PARP and PI3K might represent an effective therapeutic strategy for TNBC and potentially overcome TAL resistance.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chromones , Female , Humans , Morpholines , Phosphatidylinositol 3-Kinases/metabolism , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/metabolism
15.
Lasers Med Sci ; 37(2): 867-876, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33937952

ABSTRACT

Canine mammary gland tumors (CMGTs) are heterogeneous disease and subclassified [sarcomas (S), carcinomas (C), and carcinosarcomas (CS)] according to histopathological differentiation. Photodynamic therapy (PDT) is a promising treatment strategy based on the use of a photosensitizer (PS) activated by light. However, the therapeutic potential of PDT in the treatment of CMGTs has not been investigated, yet. Therefore, the aim of this study was to determine the in vitro protocol of 5-ALA-based-PDT for the treatment of three subtypes of CMGTs, for the first time. The intracellular PpIX florescence intensity was measured for 5-ALA (0.5 and 1 mM). After irradiation with different light doses (6, 9, 12, 18, and 24 J/cm2) for two different modes [continuous wave (CW) and pulse radiation (PR)], the cytotoxic effects of 5-ALA (0.5 and 1 mM) on the subtypes (C, S, and CS) of CMGTs were analyzed by WST-1. Finally, the optimal PDT treatment protocol was validated through Annexin V and AO/EtBr staining. Our results showed that 1 mM 5-ALA for 4-h incubation was the best treatment condition in all subtypes of CMGTs due to higher intracellular PpIX level. After irradiation with different light doses, PR mode was more effective in S primary cells at 9 J/cm2. However, a significant decrease in the viability of C and CS cells was detected at 12 /cm2 in CW mode (p < 0.05). Additionally, 1 mM 5-ALA induced apoptotic cell death in each subtype of CMGTs. Our preliminary findings suggest that (i) each subtype of CMGTs differentially responds to PDT and (ii) the light dose and mode could play an important role in the effective PDT treatment. However, further studies are needed to investigate the role of the different light sources and PDT-based apoptotic cell death in CMGTs cells.


Subject(s)
Neoplasms , Photochemotherapy , Aminolevulinic Acid/pharmacology , Animals , Apoptosis/radiation effects , Cell Line, Tumor , Dogs , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology
16.
Transl Oncol ; 15(1): 101243, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34649150

ABSTRACT

The therapeutic effects of abemaciclib (ABE), an inhibitor of cyclin- dependent kinases (CDK) 4/6, on the proliferation of two types of prostate cancer (PC) cells were revealed. In this study, in vitro cytotoxic and apoptotic effects of ABE on metastatic castration-resistant prostate cancer (mCRPC) androgen receptor (AR) negative PC-3 and AR mutant LNCaP PC cells were analyzed with WST-1, Annexin V, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential, RT-PCR, western blot, and apoptosis protein array. ABE considerably inhibited the growth of PC cells in a dose-dependent manner (p<0.01) and caused significant apoptotic cell death through the suppression of CDK4/6-Cyclin D complex, ROS generation and depolarization of mitochondria membrane potential. However, PC-3 cells were more sensitive to ABE than LNCaP cells. Furthermore, the expression levels of several pro-apoptotic and cell cycle regulatory proteins were upregulated by ABE in especially PC-3 cells with the downregulation of apoptotic inhibitor proteins. Our results suggest that ABE inhibits PC cell growth and promotes apoptosis and thus ABE treatment may be a promising treatment strategy in especially mCRPC. Further preclinical and clinical studies should be performed to clarify the clinical use of ABE for the treatment of PC.

17.
Lasers Med Sci ; 37(2): 1325-1332, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34392466

ABSTRACT

Hepatocellular carcinoma (HCC) is a heterogeneous type of cancer and current treatment options limit successful therapy outcomes. Photodynamic therapy (PDT) has attracted attention as an alternative approach in the treatment of different types of cancer. However, there is no study in the literature regarding the effect of PDT on HCC, in vitro. Therefore, the aim of this study was to determine the cytotoxic and apoptotic effects of 5-aminolevulinic acid (5-ALA)/PDT on two different HCC cell lines in terms of hepatitis B virus (HBV) infection. The therapeutic effects of 5-ALA-based PDT on HCC cell lines (Huh-7 and SNU-449) were evaluated by PpIX-fluorescence accumulation, WST-1 analysis, Annexin V analysis, and acridine orange/ethidium bromide staining after irradiation with different light doses through diode laser. The results showed that 1 mM 5-ALA displayed higher PpIX fluorescence in the SNU-449 cell line than the Huh-7 cell line after 4 h of incubation. After irradiation with different light doses (3, 6, 9, and 12 J/cm2), 5-ALA significantly reduced the proliferation of HCC cells and induced apoptotic cell death (p < 0.01). Furthermore, SNU-449 cells were more responsive to 5-ALA-based PDT than Huh-7 cells due to possibly its molecular features as well as viral HBV status. Our preliminary data obtained from this study may contribute to the development of 5-ALA/PDT-based treatment strategies in the treatment of HCC. However, this study could be improved by the elucidation of the molecular mechanisms of cell death induced by 5-ALA/PDT in HCC cells, the use of different photosensitizer, light sources, and in vivo experiments.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/radiotherapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins
18.
Bioorg Chem ; 118: 105467, 2022 01.
Article in English | MEDLINE | ID: mdl-34781115

ABSTRACT

Metal-organic structures (MOF), modern extremely proliferous materials consisting of metal ions and organic coordinating molecules, has become a promising biomedical material because of its unusual features, including great surface area, wide pore volume, flexible functionality and superior performance for drug loading. In the current investigation, Gemcitabine Hydrochloride (Gem), an anticancer drug, and Amygdalin (Amy) were loaded into a nanocomposite structure formed from bovine serum albumin (BSA) as a center and zeolytic imidazolate framework-8 (ZIF-8) as a pH sensitive protective coating. The formed BSA-Gem@ZIF-8 and BSA-Gem-Amy@ZIF-8 were successively coated by polydopamine, chelated by Au3+ and conjugated via gallic acid (GA), acquired ZIF-8 structure as a multifunctional nanocarrier at the end. It was confirmed by different characterization methods that the nanocarrier was successfully produced. Due to the nature of ZIF-8, pH dependent releases of BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were observed in in vitro studies. Cytotoxicity and apoptotic effects of these nanocarriers were evaluated using WST-1 and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. In-vitro cytotoxicity studies showed that both BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were more effective than gemcitabine alone in MCF-7 cells with less toxicity in HUVEC cells. Additionally, both pH-responsive nanocarriers induced more apoptotic cell death in MCF-7 cells. We therefore believe that the built multifunctional nanocarrier based on ZIF-8 could be an alternative therapeutic strategy the use of gemcitabine for cancer therapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Biocompatible Materials/chemistry , Deoxycytidine/analogs & derivatives , Dopamine/chemistry , Drug Delivery Systems , Metal-Organic Frameworks/chemistry , Serum Albumin, Bovine/chemistry , Animals , Antimetabolites, Antineoplastic/chemistry , Cattle , Cell Proliferation/drug effects , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured , Gemcitabine
19.
Mol Immunol ; 141: 280-286, 2022 01.
Article in English | MEDLINE | ID: mdl-34906906

ABSTRACT

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by inhibiting the repair of DNA strand breaks binding to PARP and regulate immune cells functions. Toll-like receptors (TLRs) mediate the tumor microenvironment through the modulation of proinflammatory cytokines and chemokines. In this context, this study addressed the relationship between the efficacy of talazoparib (TAL) as a PARPi and the activation of TLR3 or TLR9 by Polyinosinic:polycytidylic acid (Poly I:C) or CpG oligodeoxynucleotides (CpG-ODN) stimulation, respectively in triple negative breast cancer (TNBC). TAL alone and the combination of TAL with Poly I:C or CpG-ODN induced cell death were analyzed by water-soluble tetrazolium salt 1 (WST-1), Annexin V analysis, acridine orange staining and mRNA levels of caspase-3 and caspase-8 in HCC1937 and HCC1937-R (TAL resistant) TNBC cells. Additionally, the expression of TLR3, TLR9 and interferon regulatory factor 7 (IRF7) was observed with immunofluorescence staining and western blot analysis. Our findings showed that TAL induced TLR3 and TLR9 activation and acted in synergy with TLR3 and TLR9 agonists in TNBC cells. The stimulation of TLR3 or TLR9 and TAL treatment caused significantly more apoptosis in TNBC cells through the over-expression of caspase-3 and caspase-8. Additionally, TAL combined with Poly I:C or CpG-ODN more increased TLR3, TLR9 and IRF7 protein levels in HCC1937 cells and treatment with TAL and Poly I:C had greater potential for overcoming TAL resistance. In conclusion, the combination of PARPi with TLR agonists may be a new therapeutic combined strategy for the effective immunotherapy of TNBC.


Subject(s)
Phthalazines/pharmacology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Humans , Oligodeoxyribonucleotides/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly I-C/metabolism , Tumor Microenvironment/drug effects
20.
Mol Biol Rep ; 49(2): 1261-1271, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34826050

ABSTRACT

BACKGROUND: The activation of toll like receptors (TLR) potentially affect the inflammatory tumor microenvironment and thus is associated with tumor growth or inhibition. Cabazitaxel (CAB) has been effectively used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, the immune regulatory role of CAB in the tumor microenvironment is not clear. In this context, we for the first time assessed the immunotherapeutic role of CAB in the TLR3 signalling following activation of Poly I:C in mCRPC cells. METHODS AND RESULTS: The cytotoxic and apoptotic effects of CAB with the induction of Poly I:C were determined by WST-1, Annexin V, acridine orange, RT-PCR analysis, ELISA assay and immunofluorescence staining in DU-145 mCRPC and HUVEC control cells. Our findings showed that CAB treatment with Poly I:C significantly suppressed the proliferation of DU-145 cells through the induction of apoptosis and caspase activation. Additionally, higher concentration of CAB mediated the activation of TLR3 via increased cytoplasmic and nuclear expression of TLR3, TICAM-1 and IRF-3 in mCRPC cells. CONCLUSIONS: Co-treatment of CAB and Poly I:C was more effective in mCRPC cells with less toxicity in control cells. However, further investigations are required to elucidate the molecular mechanisms of TLRs signalling upon CAB treatment at the molecular level to further validate the immunotherapeutic efficacy of CAB in mCRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/drug therapy , Taxoids/pharmacology , Toll-Like Receptor 3/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Docetaxel/pharmacology , Humans , Immunotherapy/methods , Interferon Regulatory Factor-3 , Male , Neoplasm Metastasis/genetics , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction/drug effects , Taxoids/immunology , Taxoids/metabolism , Toll-Like Receptor 3/drug effects , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...