Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114204, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748878

ABSTRACT

Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.


Subject(s)
Caenorhabditis elegans , DNA-Binding Proteins , Disease Models, Animal , Animals , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GABAergic Neurons/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Motor Neurons/metabolism , Locomotion , Synaptic Transmission , Movement , Cholinergic Neurons/metabolism
3.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37151215

ABSTRACT

Cytoplasmic inclusions consisting of transactive response DNA-binding protein 43 (TDP-43) are a key hallmark of TDP-43 proteinopathies like amyotrophic lateral sclerosis (ALS). Caenorhabditis elegans is considered a useful model for studying the molecular mechanisms underlying TDP-43 toxicity in vivo . Here, we assessed different neuronal systems through established behavioral assays and extended the phenotypic characterisation of a C. elegans model expressing wildtype human TDP-43 ( hTDP-43 ) pan-neuronally. Our data show that neuronal expression of hTDP-43 in C. elegans disrupts chemotaxis and decreases fecundity. The basal slowing response, on the other hand, appears to be preserved in the presence of hTDP-43.

4.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37159576

ABSTRACT

Transactive response DNA binding-protein 43 (TDP-43) is a conserved RNA/DNA-binding protein with a role in RNA metabolism and homeostasis. Aberrant TDP-43 functioning has been considered a major culprit in amyotrophic lateral sclerosis (ALS). Caenorhabditis elegans can be used to phenocopy ALS in vivo . Since disrupted locomotion is a strong readout of toxicity, we examined multiple motor phenotypes of a C. elegans model expressing human wild-type TDP-43 ( hTDP-43 ) pan-neuronally. Our data reveal that impaired locomotion includes more than the common deficits in crawling capacity and the presence of early-onset paralysis. We show that reduced thrashing, abnormal coiling, and decreased pharyngeal pumping are also observed, in a temperature-dependent fashion.

5.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37159575

ABSTRACT

Inclusions consisting of transactive response DNA-binding protein 43 (TDP-43) are a characteristic feature of amyotrophic lateral sclerosis (ALS). Caenorhabditis elegans has been instrumental in studying the underlying mechanisms of TDP-43 pathology. Here, we extend the possibilities of previous studies by examining a C. elegans model expressing human wild-type TDP-43 ( hTDP-43 ) pan-neuronally. We show that disease-related (hyper)phosphorylation and cytosolic localisation of hTDP-43 are present in hTDP-43 worms and that these features can be enhanced by adjusting the environmental temperature.

6.
J Cell Sci ; 135(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-35979861

ABSTRACT

Endocytosis allows cells to internalise a wide range of molecules from their environment and to maintain their plasma membrane composition. It is vital during development and for maintenance of tissue homeostasis. The ability to visualise endocytosis in vivo requires suitable assays to monitor the process. Here, we describe imaging-based assays to visualise endocytosis in the neuroepithelium of living zebrafish embryos. Injection of fluorescent tracers into the brain ventricles followed by live imaging was used to study fluid-phase or receptor-mediated endocytosis, for which we used receptor-associated protein (RAP, encoded by Lrpap1) as a ligand for low-density lipoprotein receptor-related protein (LRP) receptors. Using dual-colour imaging combined with expression of endocytic markers, it is possible to track the progression of endocytosed tracers and to monitor trafficking dynamics. Using these assays, we reveal a role for the Lowe syndrome protein Ocrl in endocytic trafficking within the neuroepithelium. We also found that the RAP-binding receptor Lrp2 (encoded by lrp2a) appears to contribute only partially to neuroepithelial RAP endocytosis. Altogether, our results provide a basis to track endocytosis within the neuroepithelium in vivo and support a role for Ocrl in this process. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Oculocerebrorenal Syndrome , Phosphoric Monoester Hydrolases/metabolism , Zebrafish Proteins/metabolism , Animals , Carrier Proteins/metabolism , Endocytosis , Ligands , Lipoproteins, LDL/metabolism , Zebrafish/metabolism
7.
J Invest Dermatol ; 139(7): 1583-1592, 2019 07.
Article in English | MEDLINE | ID: mdl-30703358

ABSTRACT

Chronic inflammation is a hallmark of impaired healing in a plethora of tissues, including skin, and is associated with aging and diseases such as diabetes. Diabetic chronic skin wounds are characterized by excessive myeloid cells that display an aberrant phenotype, partially mediated by stable intrinsic changes induced during hematopoietic development. However, the relative contribution of myeloid cell-intrinsic factors to chronic inflammation versus aberrant signals from the local environmental was unknown. Moreover, identification of myeloid cell intrinsic factors that contribute to chronic inflammation in diabetic wounds remained elusive. Here we show that Gr-1+CD11b+ myeloid cells are retained specifically within the presumptive granulation tissue region of the wound at a higher density in diabetic mice and associate with endothelial cells at the site of injury with a higher frequency than in nondiabetic mice. Adoptive transfer of myeloid cells demonstrated that aberrant wound retention is due to myeloid cell intrinsic factors and not the local environment. RNA sequencing of bone marrow and wound-derived myeloid cells identified Selplg as a myeloid cell intrinsic factor that is deregulated in chronic wounds. In vivo blockade of this protein significantly accelerated wound healing in diabetic mice and may be a potential therapeutic target in chronic wounds and other chronic inflammatory diseases.


Subject(s)
Inflammation/metabolism , Membrane Glycoproteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Wound Healing , Adoptive Transfer , Animals , Bone Marrow Cells/metabolism , CD11b Antigen/genetics , Chronic Disease , Diabetes Mellitus, Experimental , Endothelial Cells/metabolism , Female , Male , Mice , Phenotype , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...