Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(6): 5332-5348, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816636

ABSTRACT

A series of nitrile-modified N-heterocyclic carbene (NHC) complexes of Ir(III) (2a-e) and Ru(II) (3a-d) have been prepared by transmetallation of [IrCp*Cl2]2 and [RuCl2(p-cymene)]2 forming an in situ NHC-Ag complex. The structures of all complexes were characterized by 1H NMR, 13C NMR, and Fourier transform infrared (FT-IR) spectroscopies. And the structures were clearly elucidated by performing X-ray diffraction studies on 2b, 3a, and 3c single crystals. The complexes of NHC-Ir(III) (2a-e) and NHC-Ru(II) (3a-d) were investigated in the N-alkylation reaction of aniline derivatives with benzyl alcohols to form N-benzyl amines and in the N-methylation reaction of aniline derivatives with methanol. Both reactions were performed in solvent-free media. The Ir(III) complexes (2a-e) were found to perform essentially better than similar Ru(II) complexes (3a-d) in the N-alkylation and N-methylation reactions. Among the Ir(III) complexes (2a-e), the best results were obtained with 2b. The catalytic mechanisms of both reactions were revealed by 1H NMR study. Formation of Ir-hydride species was observed for both reactions. This new report provides useful information to evaluate the activity of complexes and the differences in sensitivity between the NHCs.

2.
Org Biomol Chem ; 20(48): 9753-9762, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36448637

ABSTRACT

Nickel(II)-salen or nickel(II)-salphen catalyzed α-alkylation of ketones and nitriles with primary alcohols is reported. Various α-alkylated ketones and nitriles were obtained in high yields through a borrowing hydrogen strategy by using 1-3 mol% of nickel catalyst and a catalytic amount of NaOH (5-10 mol%) under aerobic conditions.


Subject(s)
Ketones , Nickel , Alcohols , Nitriles , Alkylation , Catalysis
3.
Org Lett ; 23(13): 5229-5234, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34143639

ABSTRACT

A new method for converting terminal epoxides and primary alcohols into α-alkylated ketones under borrowing hydrogen conditions is reported. The procedure involves a one-pot epoxide ring opening and alkylation via primary alcohols in the presence of an N-heterocyclic carbene iridium(I) catalyst, under aerobic conditions, with water as the side product.

4.
J Org Chem ; 85(14): 9139-9152, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32584037

ABSTRACT

Under borrowing hydrogen conditions, NHC-iridium(I) catalyzed the direct or one-pot sequential synthesis of α,α-disubstituted ketones via the alkylation of secondary alcohols with primary alcohols is reported. Notably, the present approach provides a new method for the facile synthesis of α,α-disubstituted ketones and featured with several characteristics, including a broad substrate scope, using easy-to-handle alcohols as starting materials, and performing the reactions under aerobic conditions. Moreover, the selective one-pot formation of ß,ß-disubstituted alcohols was achieved by the addition of an external hydrogen source to the reaction mixture.

5.
J Org Chem ; 84(10): 6286-6297, 2019 May 17.
Article in English | MEDLINE | ID: mdl-30986066

ABSTRACT

Iridium(I) complexes having an imidazol-2-ylidene ligand with benzylic wingtips efficiently catalyzed the ß-alkylation of secondary alcohols with primary alcohols and acceptorless dehydrogenative cyclization of 2-aminobenzyl alcohol with ketones through a borrowing hydrogen pathway. The ß-alkylated alcohols, including cholesterol derivatives, and substituted quinolines were obtained in good yields by using a minute amount of the catalyst with a catalytic amount of NaOH or KOH under the air atmosphere, liberating water (and H2 in the case of quinoline synthesis) as the sole byproduct. Notably, this system demonstrated turnover numbers of 940 000 (for ß-alkylation of secondary alcohols with primary alcohols by using down to 0.0001 mol % = 1 ppm of the catalyst) and 9200 (acceptorless dehydrogenative cyclization of 2-aminobenzyl alcohol with ketones).

6.
Dalton Trans ; 47(48): 17317-17328, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30475380

ABSTRACT

A series of binuclear rhodium(i) and iridium(i) complexes with 2,6-bis(benzimidazol-2-yl) pyridine (bzimpy) derivatives were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular and crystal structures of complex 3d were determined by the single crystal X-ray diffraction technique. Their monometallic analogues were prepared to compare the catalytic properties of the bimetallic complexes. To determine the catalyst properties that result in a cooperative, bimetallic enhancement of the reaction rate, the systematic variation of the intermetallic distance and the ligand donor properties of the bimetallic complexes were explored based on the transfer hydrogenation reactions of ketones.

7.
J Org Chem ; 83(5): 2875-2881, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29432002

ABSTRACT

A highly effective and green procedure for the formation of α-alkylated ketones has been disclosed via the reaction of primary alcohols with secondary alcohols and ketones by using [IrCl(COD)(NHC)] complexes as a catalyst. Various α-alkylated ketones were obtained in high yields from the alkylation of alcohol with alcohol and ketone with alcohol through a borrowing hydrogen reaction by using 0.05-0.5 mol % iridium(I) and a catalytic amount of KOH (5-10 mol %) as the base under air atmosphere and within very short reaction times.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 130: 516-25, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24813280

ABSTRACT

The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.


Subject(s)
Magnetic Resonance Spectroscopy , Phenylenediamines/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Hot Temperature , Hydrogen Bonding , Ligands , Molecular Conformation , Quantum Theory , Temperature , Thermodynamics , Vibration
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 103: 255-63, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23261620

ABSTRACT

The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C(33)H(25)N(5)), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) (1)H and (13)C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO (1)H and (13)C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.


Subject(s)
Benzimidazoles/chemistry , Pyridines/chemistry , Benzimidazoles/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Pyridines/chemical synthesis , Quantum Theory , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...