Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 31(4): 518-47, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18088337

ABSTRACT

This paper characterizes the transcriptional and metabolic response of a chilling-tolerant species to an increasingly large decrease of the temperature. Arabidopsis Col-0 was grown at 20 degrees C and transferred to 17, 14, 12, 10 or 8 degrees C for 6 and 78 h, before harvesting the rosette and profiling >22 000 transcripts, >20 enzyme activities and >80 metabolites. Most parameters showed a qualitatively similar response across the entire temperature range, with the amplitude increasing as the temperature decreased. Transcripts typically showed large changes after 6 h, which were often damped by 78 h. Genes were induced for sucrose, proline, raffinose, tocopherol and polyamine synthesis, phenylpropanoid and flavonoid metabolism, fermentation, non-phosphorylating mitochondrial electron transport, RNA processing, and protein synthesis, targeting and folding. Genes were repressed for carbonic anhydrases, vacuolar invertase, and ethylene and jasmonic acid signalling. While some enzyme activities and metabolites changed rapidly, most changed slowly. After 6 h, there was an accumulation of phosphorylated intermediates, a shift of partitioning towards sucrose, and a perturbation of glycine decarboxylation and nitrogen metabolism. By 78 h, there was an increase of the overall protein content and many enzyme activities, a general increase of carbohydrates, organic and amino acids, and an increase of many stress-responsive metabolites including raffinose, proline, tocopherol and polyamines. When the responses of transcripts and metabolism were compared, there was little agreement after 6 h, but considerable agreement after 78 h. Comparison with the published studies indicated that much, but not all, of the response was orchestrated by the CBF programme. Overall, our results showed that transcription and metabolism responded in a continuous manner across a wide range of temperatures. The general increase of enzyme activities and metabolites emphasized the positive and compensatory nature of this response.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant/genetics , Genomics/methods , Adaptation, Physiological , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Signal Transduction , Time Factors , Transcription, Genetic/physiology
2.
Plant J ; 49(3): 463-91, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17217462

ABSTRACT

Arabidopsis seedlings were subjected to 2 days of carbon starvation, and then resupplied with 15 mm sucrose. The transcriptional and metabolic response was analyzed using ATH1 arrays, real-time quantitative (q)RT-PCR analysis of >2000 transcription regulators, robotized assays of enzymes from central metabolism and metabolite profiling. Sucrose led within 30 min to greater than threefold changes of the transcript levels for >100 genes, including 20 transcription regulators, 15 ubiquitin-targeting proteins, four trehalose phosphate synthases, autophagy protein 8e, several glutaredoxins and many genes of unknown function. Most of these genes respond to changes of endogenous sugars in Arabidopsis rosettes, making them excellent candidates for upstream components of sugar signaling pathways. Some respond during diurnal cycles, consistent with them acting in signaling pathways that balance the supply and utilization of carbon in normal growth conditions. By 3 h, transcript levels change for >1700 genes. This includes a coordinated induction of genes involved in carbohydrate synthesis, glycolysis, respiration, amino acid and nucleotide synthesis, DNA, RNA and protein synthesis and protein folding, and repression of genes involved in amino acid and lipid catabolism, photosynthesis and chloroplast protein synthesis and folding. The changes of transcripts are followed by a delayed activation of central metabolic pathways and growth processes, which use intermediates from these pathways. Sucrose and reducing sugars accumulate during the first 3-8 h, and starch for 24 h, showing that there is a delay until carbon utilization for growth recommences. Gradual changes of enzyme activities and metabolites are found for many metabolic pathways, including glycolysis, nitrate assimilation, the shikimate pathway and myoinositol, proline and fatty acid metabolism. After 3-8 h, there is a decrease of amino acids, followed by a gradual increase of protein.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Seedlings/metabolism , Sucrose/metabolism , Arabidopsis/enzymology , Carbon/metabolism , Cell Growth Processes/physiology , Circadian Rhythm/physiology , Gene Expression Profiling , Genes, Plant , Glucose/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Seedlings/enzymology , Signal Transduction/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...