Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 35(10): 1095-105, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26377873

ABSTRACT

An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.


Subject(s)
Droughts , Hot Temperature , Quercus/growth & development , Cambium/growth & development , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Plant Leaves/growth & development , Seasons , Species Specificity , Switzerland
2.
Plant Biol (Stuttg) ; 15 Suppl 1: 1-4, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23279293
3.
Plant Biol (Stuttg) ; 15 Suppl 1: 148-56, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23279295

ABSTRACT

European deciduous oaks are closely related and are known for their strong emission of volatile isoprenoids. They are chemo-taxonomically diverse, but hybridise frequently. Four-year-old oak seedlings growing together in a model ecosystem facility under near-natural conditions were studied. The leaves were morphologically classified in the three oak species Quercus robur, Q. pubescens and Q. petraea (with four provenances each) and further investigated by a molecular-genetic approach. Q. robur was morphologically and genetically clearly different from Q. pubescens and Q. petraea, whereas Q. pubescens and Q. petraea individuals used in this study were morphologically and genetically more similar. There was a minor impact of among and within species variability on isoprene synthesis, isoprene emission and photosynthesis. Isoprene emission rates normalised to 25 °C leaf temperature ranged from 5.78 to 10.66 nmol m(-2)  s(-1) , whereas photosynthesis ranged from 12.8 to 17.6 µmol m(-2)  s(-1) . On cloudy days, among the provenances of each species, only net photosynthesis of the Q. robur provenance Hünenberg was reduced and isoprene synthase activity of the Q. pubescens provenance Promotogno increased. On sunny days, photosynthesis did not differ among the provenances. Over all provenances, gas exchange on cloudy days did not differ significantly from sunny days. In the combined data of cloudy and sunny days, no differences between the studied provenances and oak species were detected in isoprene emission and photosynthesis. Thus, isoprene emission and photosynthesis rates were remarkably stable among oak species and provenances. The results indicate that taxonomic differences in the studied oak species are not reflected in isoprene emission and photosynthesis, probably because of the high plasticity of gene expression resulting in high phenotypic flexibility.


Subject(s)
Genetic Variation , Hemiterpenes/genetics , Photosynthesis/genetics , Plant Leaves/metabolism , Quercus/genetics , Seedlings/metabolism , Butadienes/metabolism , Europe , Gases , Gene Expression , Genes, Plant , Hemiterpenes/metabolism , Light , Pentanes/metabolism , Photosynthesis/physiology , Quercus/metabolism , Quercus/physiology , Species Specificity
4.
Plant Biol (Stuttg) ; 15 Suppl 1: 220-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23279296

ABSTRACT

Being tolerant to heat and drought, oaks are promising candidates for future forestry in view of climate change in Central Europe. Air warming is expected to increase, and drought decrease soil N availability and thus N supply to trees. Here, we conducted a model ecosystem experiment, in which mixed stands of young oaks (Quercus robur, Q. petraea and Q. pubescens) were grown on two different soils and subjected to four climate treatments during three growing seasons: air warming by 1-2 °C, drought periods (average precipitation reduction of 43-60%), a combination of these two treatments, and a control. In contrast to our hypotheses, neither air warming nor drought significantly affected N availability, whereas total amounts, vertical distribution and availability of soil N showed substantial differences between the two soils. While air warming had no effect on tree growth and N accumulation, the drought treatment reduced tree growth and increased, or tended to increase, N accumulation in the reduced biomass, indicating that growth was not limited by N. Furthermore, (15) N-labelling revealed that this accumulation was associated with an increased uptake of nitrate. On the basis of our results, climate change effects on N dynamics are expected to be less important in oak stands than reduced soil water availability.


Subject(s)
Adaptation, Physiological , Droughts , Hot Temperature , Nitrogen/metabolism , Quercus/metabolism , Soil , Stress, Physiological , Air , Biomass , Climate , Ecosystem , Global Warming , Models, Biological , Nitrates/metabolism , Quercus/growth & development , Quercus/physiology , Rain , Species Specificity , Water
5.
Plant Biol (Stuttg) ; 15 Suppl 1: 157-68, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22672383

ABSTRACT

The drought- and thermo-tolerant Quercus pubescens, a tree species growing on both acidic and calcareous soils in the sub-Mediterranean region, was exposed to soil drought (-60% to -80% soil water content) and air warming (+1.2 °C daytime temperature), singly and in combination. The experiment was conducted on two natural forest soils with similar texture but different pH (acidic and calcareous soils). The physiological (photosynthesis) and biochemical (antioxidant system) responses of Q. pubescens were investigated. On acidic soil, Q. pubescens had a higher reactive oxygen species (ROS) content than on calcareous soil, confirming that this species is better adapted to the latter soil type. A down-regulation of ascorbate-glutathione cycle enzymes suggests that ROS were used as signalling molecules. Air warming stimulated stomatal opening, while soil drought induced stomatal closure in the late afternoon and reduced Rubisco carboxylation efficiency. Photosynthetic performance in the combined treatment was higher than under single drought stress and similar to control and air warming. Q. pubescens biochemical responses depended on soil pH. On acidic soil, Q. pubescens trees exposed to air warming used ROS as signalling molecules. On calcareous soil, these trees were able to balance both soil drought and air warming stress, avoiding ROS toxic effects by increasing antioxidant enzyme activitiy and maintaining a high enzymatic antioxidant defence. When combined, drought and air warming induced either more severe (higher oxidative pressure and impairment of the light-harvesting complex) or different responses (decline of the thermal energy dissipation capacity) relative to the single stressors. Overall, however, Q. pubescens preserved the functionality of the photosynthetic apparatus and controlled the antioxidant system response, thus confirming its drought and thermo-tolerance and therefore its potential to adapt to the ongoing climate change.


Subject(s)
Adaptation, Physiological , Antioxidants/metabolism , Droughts , Hot Temperature , Photosynthesis/physiology , Quercus/physiology , Soil , Air , Climate , Down-Regulation , Ecosystem , Global Warming , Hydrogen-Ion Concentration , Light-Harvesting Protein Complexes/metabolism , Oxidative Stress , Plant Stomata , Quercus/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Water
6.
Plant Biol (Stuttg) ; 15 Suppl 1: 230-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22686410

ABSTRACT

The present study aimed to elucidate the influence of drought and elevated temperature on relative abundance and functioning of the ectomycorrhizal fungus Cenococcum geophilum on three oak species differing in adaptation to a warm and dry climate. The experiment QUERCO comprised three Quercus species (Q. robur, Q. petraea, Q. pubescens) grown for 3 years under four treatments: elevated air temperature, drought, a combination of the two, and control. Fine root samples were analysed for relative abundance and potential extracellular enzyme activities of ectomycorrhizae of C. geophilum, a fungal species known to be drought resistant. The relative abundance of C. geophilum on the roots of the oak species was significantly increased by temperature, decreased by drought, but unchanged in the combined treatment compared to the control. Although the extent of treatment effects differed among oak species, no significant influence of tree species on relative abundance of C. geophilum was detected. Exoenzyme activities of C. geophilum on Q. robur and Q. petraea (but not Q. pubescens) significantly increased in the combined treatment, but for all oak species were reduced under drought and air warming alone compared to the control. There was a significant negative correlation between abundance of C. geophilum and its leucine aminopeptidase activity. As this enzyme is not frequent among ectomycorrhizal fungi, this emphasises the functional importance of C. geophilum in the ectomycorrhizal community. Our results indicate that increased temperature and drought will influence the relative abundance and enzyme activity of C. geophilum. However, both the Quercus species and C. geophilum tolerated warming and strong drought.


Subject(s)
Adaptation, Physiological , Droughts , Fungi , Hot Temperature , Mycorrhizae , Quercus/microbiology , Stress, Physiological , Air , Climate , Fungi/enzymology , Fungi/growth & development , Global Warming , Leucyl Aminopeptidase/metabolism , Mycorrhizae/enzymology , Mycorrhizae/growth & development , Plant Roots/microbiology , Species Specificity , Water
7.
Plant Biol (Stuttg) ; 15 Suppl 1: 138-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22288508

ABSTRACT

Global climate change is expected to increase annual temperatures and decrease summer precipitation in Central Europe. Little is known of how forests respond to the interaction of these climate factors and if their responses depend on soil conditions. In a 3-year lysimeter experiment, we investigated the growth response of young mixed oak stands, on either acidic or calcareous soil, to soil water regime, air-warming and drought treatments corresponding to an intermediate climate change scenario. The air-warming and drought treatments were applied separately as well as in combination. The air-warming treatment had no effect on soil water availability, evapotranspiration or stand biomass. Decreased evapotranspiration from the drought-exposed stands led to significantly higher air and soil temperatures, which were attributed to impaired transpirational cooling. Water limitation significantly reduced the stand foliage, shoot and root biomass as droughts were severe, as shown in low leaf water potentials. Additional air warming did not enhance the drought effects on evapotranspiration and biomass, although more negative leaf water potentials were observed. After re-watering, evapotranspiration increased within a few days to pre-drought levels. Stands not subjected to the drought treatment produced significantly less biomass on the calcareous soil than on the acidic soil, probably due to P or Mn limitation. There was no difference in biomass and water regime between the two soils under drought conditions, indicating that nutrient availability was governed by water availability under these conditions. The results demonstrate that young oak stands can cope with severe drought and therefore can be considered for future forestry.


Subject(s)
Adaptation, Physiological , Droughts , Hot Temperature , Plant Transpiration , Quercus/physiology , Soil , Water/physiology , Air , Biomass , Ecosystem , Global Warming , Manganese , Phosphorus , Plant Structures/growth & development , Plant Structures/physiology , Quercus/growth & development , Stress, Physiological , Trees
8.
Plant Biol (Stuttg) ; 15 Suppl 1: 185-97, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23009690

ABSTRACT

Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species.


Subject(s)
Acclimatization , Droughts , Global Warming , Hot Temperature , Plant Leaves/physiology , Quercus/physiology , Soil , Air , Carbon/metabolism , Chlorophyll/metabolism , Climate , Ecosystem , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Quercus/growth & development , Quercus/metabolism , Species Specificity , Stress, Physiological , Water
9.
Plant Biol (Stuttg) ; 15 Suppl 1: 169-76, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22776350

ABSTRACT

Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought.


Subject(s)
Adaptation, Physiological , Droughts , Hot Temperature , Photosynthesis/physiology , Quercus/physiology , Seasons , Stress, Physiological , Chlorophyll/metabolism , Climate , Down-Regulation , Global Warming , Photosystem II Protein Complex/physiology , Plant Leaves , Plant Stomata , Quercus/metabolism , Soil , Species Specificity , Water
10.
Environ Pollut ; 158(6): 1986-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20036449

ABSTRACT

Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.


Subject(s)
Air Pollutants/toxicity , Air Pollution/adverse effects , Environmental Monitoring/methods , Forestry/methods , Trees/growth & development , Air Pollutants/analysis , Air Pollution/analysis , Carbon Dioxide/analysis , Carbon Dioxide/toxicity , Climate Change , Ecosystem , Nitrogen/analysis , Nitrogen/toxicity , Ozone/analysis , Ozone/toxicity , Trees/drug effects
11.
Environ Pollut ; 124(1): 101-18, 2003.
Article in English | MEDLINE | ID: mdl-12683987

ABSTRACT

Ozone injury to natural vegetation is being increasingly surveyed throughout the northern hemisphere. There exists a growing list of species showing visible 'ozone-like' symptoms which needs to be validated. This study presents the results from a test survey of ozone injury to forest vegetation in the light exposed sites of five Swiss level II plots, for the new ICP-Forests protocol. With AOT40 from 14 to 28 ppm-h in 2000, ten out of 49 woody plant species displayed typical symptoms, and four showed untypical symptoms. Symptom origin was investigated in nine and validated in seven species, using morphological, histological and cellular markers of oxidative stress and ozone-induced plant response. Independent of taxonomic position, ozone effects were characterized by the induction of oxidative stress in the mesophyll resulting in discrete and light-dependent hypersensitive-like responses and in accelerated cell senescence. The presented combination of cellular and morphological markers allows differential diagnosis of visible ozone injury.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Ozone/analysis , Plant Leaves , Microscopy , Switzerland , Trees
12.
Environ Pollut ; 109(3): 489-500, 2000 Sep.
Article in English | MEDLINE | ID: mdl-15092882

ABSTRACT

Because the current critical level of ozone (O(3)) for forest trees is based only on one species, the responses of five deciduous tree species were differentiated in a climate chamber experiment. The number of symptomatic leaves per tree was significantly increased, and stomatal conductance was decreased under 50% ambient+30 nl l(-1) O(3) as compared to 'normal' senescence at 50% ambient [O(3)]. Species with a high stomatal conductance did not show earlier or more leaf injury symptoms. The additional 30 nl l(-1) O(3) induced specific pectinaceous cell wall protrusions, phenolic cell wall incrustations, tonoplast vesicles, and inhomogeneous, condensed/precipitated phenolic material in the vacuoles. Due to added O(3), cell senescence was accelerated with increased electron-density of the cytoplasm, and initial chloroplast degeneration. The slow degeneration process started in mesophyll cells, and expanded into epidermal and finally guard cells. Because of the large variance in biomass between individuals and species, the current critical level is supported by the assessment of visible leaf symptoms rather than growth reduction.

13.
New Phytol ; 137(3): 389-397, 1997 Nov.
Article in English | MEDLINE | ID: mdl-33863074

ABSTRACT

Cloned cuttings of Betula pendula Roth were grown in field fumigation chambers at Birmensdorf throughout one growing season in filtered air with either < 3 (control) or 90/40 nl l-1 O3 (day/night; ozone generated from pure oxygen). Each ozone regime was split into high and low soil nutrient regimes by watering plants with either a 0.05 % or a 0.005% solution of a fertilizer which contained macronutrients and micronutrients. Fertilization had a strong effect on plant growth, enzyme activities and the expression of ozone-induced effects at the biochemical level. The activities of PEPC and Rubisco were enhanced about threefold in the plants with high fertilization (HF). Significant effects of ozone were in most cases found only in the older leaves of the plants with low fertilization (LF), There, sucrose, glucose and fructose levels were enhanced. In both fertilization treatments, the number of starch granules along the minor veins was increased. These ozone effects point to a decreased or inhibited phloem loading. The increased PEPC activity and the enhanced malate levels in the ozone-exposed plants might be the result of a redirection of carbon flow from sucrose synthesis and translocation towards anapleurotic processes, which can feed detoxification and repair of ozone injury as indicated by enhanced respiration. These findings agree well with the observed effects of ozone in lowering the root: shoot biomass ratio. Although there was a marked reduction in the O3 /LF plants, O3 /HF plants showed no significant response. Inositol was decreased under ozone exposure in both fertilizer treatments, contrasting with the pattern for carbohydrates. These results demonstrate the role of fertilization as an important modifier of ozone-induced effects at the plant biochemical level. Well fertilized plants appear to cope better with the impact of ozone on metabolism.

14.
Tree Physiol ; 15(3): 159-65, 1995 Mar.
Article in English | MEDLINE | ID: mdl-14965971

ABSTRACT

For 20 weeks during the growing season, cuttings of one birch clone (Betula pendula Roth.) were exposed in the Birmensdorf fumigation chambers to O(3)-free air (control) or 75 nl O(3) l(-1). Ozone was supplied either from 1900 until 0700 h (nighttime regime), from 0700 until 1900 h (daylight regime), or all day (24-h regime). By autumn, reductions in whole-plant biomass production, root/shoot biomass and stem weight/length ratios were evident in all three O(3) regimes. The reductions in cuttings receiving the 24-h O(3) treatment were about twofold larger than in cuttings receiving the daylight O(3) treatment. Stomata were open at night, and stomatal conductance was about 50% of its maximum daytime value. We calculated that the rate of O(3) uptake into leaves in the dark approached 4 nmol m(-2) s(-1). Whole-plant production and carbon allocation were more sensitive to O(3) during the night than during the day; however, O(3) exposure caused similar visible leaf injury in both of the 12-h regimes, although the leaves exposed to O(3) at night exhibited delayed O(3)-induced shedding. Overall, changes in production and carbon allocation were determined by the external O(3) dose rather than by the kind of O(3) exposure, indicating that, at the seasonal scale, the internal dose of ozone that was physiologically effective was a constant fraction of the external O(3) dose. We conclude that nighttime O(3) exposures should be included in the daily time period for determining critical concentrations of O(3) causing injury in trees.

15.
Environ Pollut ; 85(2): 185-9, 1994.
Article in English | MEDLINE | ID: mdl-15091675

ABSTRACT

Since 1971 unshaded leaves from the top of marked beech trees (Fagus sylvatica L.) in the vicinity of a regional waste incinerator have been sampled every year in early September. The unwashed leaf samples were analyzed for the concentration of Cl- and, in some years, for 16 other elements. The operation of the waste incinerator distinctly increased the Cl- concentration in the foliage. When the flue gas filtration did not work properly, several other elements also accumulated (without any obvious dust accumulation). There were no significant correlations between precipitation and concentration of water-soluble elements in foliage samples. This suggested that precipitation was not accelerating foliar leaching so that the bioindication of pollutant accumulation is not restricted in foliage with a well developed cuticula.

16.
Environ Pollut ; 81(3): 207-12, 1993.
Article in English | MEDLINE | ID: mdl-15091806

ABSTRACT

Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...