Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 73(5): 1581-1601, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34910813

ABSTRACT

C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.


Subject(s)
Flaveria , Flaveria/genetics , Flaveria/metabolism , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Metabolome , Photosynthesis , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
2.
J Exp Bot ; 70(20): 5809-5825, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31353406

ABSTRACT

Metabolite profiles provide a top-down overview of the balance between the reactions in a pathway. We compared Calvin-Benson cycle (CBC) intermediate profiles in different conditions in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) to learn which features of CBC regulation differ and which are shared between these model eudicot and monocot C3 species. Principal component analysis revealed that CBC intermediate profiles follow different trajectories in Arabidopsis and rice as irradiance increases. The balance between subprocesses or reactions differed, with 3-phosphoglycerate reduction being favoured in Arabidopsis and ribulose 1,5-bisphosphate regeneration in rice, and sedoheptulose-1,7-bisphosphatase being favoured in Arabidopsis compared with fructose-1,6-bisphosphatase in rice. Photosynthesis rates rose in parallel with ribulose 1,5-bisphosphate levels in Arabidopsis, but not in rice. Nevertheless, some responses were shared between Arabidopsis and rice. Fructose 1,6-bisphosphate and sedoheptulose-1,7-bisphosphate were high or peaked at very low irradiance in both species. Incomplete activation of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase may prevent wasteful futile cycles in low irradiance. End-product synthesis is inhibited and high levels of CBC intermediates are maintained in low light or in low CO2 in both species. This may improve photosynthetic efficiency in fluctuating irradiance, and facilitate rapid CBC flux to support photorespiration and energy dissipation in low CO2.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/physiology , Oryza/metabolism , Oryza/physiology , Photosynthesis/physiology , Arabidopsis/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Oryza/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology
3.
Plant Cell ; 26(6): 2310-2350, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24894045

ABSTRACT

We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.

4.
Plant Cell Environ ; 32(7): 859-74, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19236606

ABSTRACT

Arabidopsis was grown in a 12, 8, 4 or 3 h photoperiod to investigate how metabolism and growth adjust to a decreased carbon supply. There was a progressive increase in the rate of starch synthesis, decrease in the rate of starch degradation, decrease of malate and fumarate, decrease of the protein content and decrease of the relative growth rate. Carbohydrate and amino acids levels at the end of the night did not change. Activities of enzymes involved in photosynthesis, starch and sucrose synthesis and inorganic nitrogen assimilation remained high, whereas five of eight enzymes from glycolysis and organic acid metabolism showed a significant decrease of activity on a protein basis. Glutamate dehydrogenase activity increased. In a 2 h photoperiod, the total protein content and most enzyme activities decreased strongly, starch synthesis was inhibited, and sugars and amino acids levels rose at the end of the night and growth was completely inhibited. The rate of starch degradation correlated with the protein content and the relative growth rate across all the photoperiod treatments. It is discussed how a close coordination of starch turnover, the protein content and growth allows Arabidopsis to avoid carbon starvation, even in very short photoperiods.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Carbon/metabolism , Photoperiod , Starch/metabolism , Arabidopsis Proteins/metabolism , Carbohydrate Metabolism , Light
5.
Plant Physiol ; 146(4): 1834-61, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18305208

ABSTRACT

The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modifying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identifying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown.


Subject(s)
Arabidopsis/metabolism , Carbohydrate Metabolism , Carbon/metabolism , RNA, Messenger/genetics , Arabidopsis/genetics , Gene Expression Profiling
6.
Plant Cell ; 17(12): 3257-81, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16299223

ABSTRACT

The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO(2)]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle.


Subject(s)
Arabidopsis/genetics , Carbohydrates/physiology , Circadian Rhythm , Gene Expression Regulation, Plant/physiology , Genes, Plant , Mutation , Nitrogen/physiology , RNA, Messenger/genetics
7.
Plant J ; 39(6): 847-62, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15341628

ABSTRACT

A larger proportion of the fixed carbon is retained as starch in the leaf in short days, providing a larger store to support metabolism and carbon export during the long night. The mechanisms that facilitate this adjustment of the sink-source balance are unknown. Starchless pgm mutants were analysed to discover responses that are triggered when diurnal starch turnover is disturbed. Sugars accumulated to high levels during the day, and fell to very low levels by the middle of the night. Sugars rose rapidly in the roots and rosette after illumination, and decreased later in the light period. Global transcript profiling revealed only small differences between pgm and Col0 at the end of the day but large differences at the end of the night, when pgm resembled Col0 after a 4-6 h prolongation of the night and many genes required for biosynthesis and growth were repressed [Plant J. 37 (2004) 914]. It is concluded that transient sugar depletion at the end of the night inhibits carbon utilization at the start of the ensuing light period. A second set of experiments investigated the stimulation of starch synthesis in response to short days in wild-type Col0. In short days, sugars were very low in the roots and rosette at the end of the dark period, and after illumination accumulated rapidly in both organs to levels that were higher than in long days. The response resembles pgm, except that carbohydrate accumulated in the leaf as starch instead of sugars. A similar response was found after transfer from long to short days. Inclusion of sugar in the rooting medium attenuated the stimulation of starch synthesis. Post-translational activation of ADP-glucose pyrophosphorylase (AGPase) was increased in pgm, and in Col0 in short days. It is concluded that starch synthesis is stimulated in short day conditions because sugar depletion at the end of the night triggers a temporary inhibition of growth and carbohydrate utilization in the first part of the light period, leading to transient accumulation of sugar and activation of AGPase.


Subject(s)
Arabidopsis/physiology , Circadian Rhythm , Nucleotidyltransferases/metabolism , Photoperiod , Protein Processing, Post-Translational , Starch/metabolism , Sucrose/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbohydrate Metabolism , Glucose-1-Phosphate Adenylyltransferase , Light , Nucleotidyltransferases/genetics , Photosynthesis , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...