Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 132(Pt 11): 3165-74, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19720722

ABSTRACT

Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as 'benign cytochrome c oxidase deficiency myopathy' is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.


Subject(s)
Cytochrome-c Oxidase Deficiency , Mitochondrial Encephalomyopathies , Point Mutation , Base Sequence , Cytochrome-c Oxidase Deficiency/genetics , Cytochrome-c Oxidase Deficiency/pathology , Cytochrome-c Oxidase Deficiency/physiopathology , Diagnosis, Differential , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Encephalomyopathies/physiopathology , Molecular Biology , Molecular Sequence Data , Muscle, Skeletal/pathology , Nucleic Acid Conformation , Pedigree , Phenotype , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...