Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 14(11): 6050-5, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25291305

ABSTRACT

We present a new fabrication method of graphene spin-valve devices that yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si(++)/SiO2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi-, and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10 µm combined with carrier mobilities exceeding 20,000 cm(2)/(V s).

2.
Nano Lett ; 11(6): 2363-8, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21563787

ABSTRACT

We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.


Subject(s)
Copper/chemistry , Graphite/chemistry , Particle Size , Surface Properties
3.
Phys Rev Lett ; 99(9): 097206, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17931034

ABSTRACT

The effect of nonmagnetic dilution in metallic antiferromagnets (AFMs) on the exchange bias (EB) has been investigated from a structural, magnetic, and Monte Carlo simulation point of view in bilayers of CoFe/(IrMn)1-xCux. Dilution by Cu atoms throughout the volume of the AFM IrMn gives rise to an enhanced EB field (HEB) for 5 K

SELECTION OF CITATIONS
SEARCH DETAIL