Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38726758

ABSTRACT

PURPOSE OF REVIEW: 25 years after the discovery of claudins as the central constituents of tight junctions, the "hunter-gatherer phase" of claudin research is coming to an end. Deficiency in individual claudins as a cause of rare hereditary diseases is well documented. However, knowledge about the involvement of renal claudins in common kidney diseases and strategies to utilize claudins or their regulators for intervention are still scarce. The present review summarizes novel approaches to address these questions. RECENT FINDINGS: Publicly accessible omics data provide new insights not only into general claudin expression patterns along the nephron, but also into sex-specific differences in claudin expression and into claudin dysregulation in renal injury. Computational association studies identify claudin variants as risk factors for kidney disease such as nephrolithiasis or loss of filtration capacity. The establishment of innovative cell culture and organoid models contributes to a better understanding of junctional and extra-junctional functions of individual claudins. SUMMARY: The current studies lay the foundation for the identification of upstream regulators of renal claudin expression and thus for the development of new concepts for the treatment of kidney disease.

2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731882

ABSTRACT

In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).


Subject(s)
Sweat Glands , Sweat , Tight Junctions , Humans , Sweat Glands/metabolism , Female , Tight Junctions/metabolism , Male , Sweat/metabolism , Adult , Middle Aged , Urticaria/metabolism , Urticaria/pathology , Sweating , Skin/metabolism , Skin/pathology
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396929

ABSTRACT

Fluorescently labelled compounds are often employed to study the paracellular properties of epithelia. For flux measurements, these compounds are added to the donor compartment and samples collected from the acceptor compartment at regular intervals. However, this method fails to detect rapid changes in permeability. For continuous transepithelial flux measurements in an Ussing chamber setting, a device was developed, consisting of a flow-through chamber with an attached LED, optical filter, and photodiode, all encased in a light-impermeable container. The photodiode output was amplified and recorded. Calibration with defined fluorescein concentration (range of 1 nM to 150 nM) resulted in a linear output. As proof of principle, flux measurements were performed on various cell lines. The results confirmed a linear dependence of the flux on the fluorescein concentration in the donor compartment. Flux depended on paracellular barrier function (expression of specific tight junction proteins, and EGTA application to induce barrier loss), whereas activation of transcellular chloride secretion had no effect on fluorescein flux. Manipulation of the lateral space by osmotic changes in the perfusion solution also affected transepithelial fluorescein flux. In summary, this device allows a continuous recording of transepithelial flux of fluorescent compounds in parallel with the electrical parameters recorded by the Ussing chamber.


Subject(s)
Tight Junction Proteins , Tight Junctions , Tight Junctions/metabolism , Epithelium , Cell Line , Tight Junction Proteins/metabolism , Fluorescein/metabolism
4.
Nat Rev Nephrol ; 19(9): 587-603, 2023 09.
Article in English | MEDLINE | ID: mdl-37344620

ABSTRACT

Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.


Subject(s)
Claudins , Kidney Diseases , Humans , Claudins/metabolism , Kidney/metabolism , Homeostasis , Kidney Diseases/metabolism , Tight Junction Proteins/metabolism , Water/metabolism
5.
Nat Commun ; 14(1): 1287, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36890159

ABSTRACT

Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.


Subject(s)
Exome , Genome-Wide Association Study , Humans , Exome/genetics , Biological Specimen Banks , Kidney , United Kingdom , Polymorphism, Single Nucleotide
6.
Acta Physiol (Oxf) ; 237(3): e13927, 2023 03.
Article in English | MEDLINE | ID: mdl-36606514

ABSTRACT

AIM: Perturbed calcium homeostasis limits life expectancy in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC). This rare disease occurs by loss-of-function mutations in CLDN16 or CLDN19 genes, causing impaired paracellular reabsorption of divalent cations along the cortical thick ascending limb (cTAL). Only partial compensation takes place in the ensuing late distal convoluted tubule, connecting tubule, and collecting duct, where the luminal transient receptor potential channel V5 (TRPV5), as well as basolateral plasma membrane calcium ATPase (PMCA) and sodium-potassium exchanger (NCX1) mediate transcellular Ca2+ reabsorption. The loop diuretic furosemide induces compensatory activation in these distal segments. Normally, furosemide enhances urinary calcium excretion via inhibition of the aforementioned cTAL. As Ca2+ reabsorption in the cTAL is already severely impaired in FHHNC patients, furosemide may alleviate hypercalciuria in this disease by activation of the distal transcellular Ca2+ transport proteins. METHODS: Cldn16-deficient mice (Cldn16-/- ) served as a FHHNC model. Wild-type (WT) and Cldn16-/- mice were treated with furosemide (7 days of 40 mg/kg bw) or vehicle. We assessed renal electrolyte handling (metabolic cages) and key divalent transport proteins. RESULTS: Cldn16-/- mice show higher Ca2+ excretion than WT and compensatory stimulation of Cldn2, TRPV5, and NCX1 at baseline. Furosemide reduced hypercalciuria in Cldn16-/- mice and enhanced TRPV5 and PMCA levels in Cldn16-/- but not in WT mice. CONCLUSIONS: Furosemide significantly reduces hypercalciuria, likely via upregulation of luminal and basolateral Ca2+ transport systems in the distal nephron and collecting duct in this model for FHHNC.


Subject(s)
Furosemide , Hypercalciuria , Nephrocalcinosis , Animals , Mice , Calcium/metabolism , Carrier Proteins , Claudins/metabolism , Furosemide/pharmacology , Furosemide/therapeutic use , Hypercalciuria/drug therapy , Hypercalciuria/metabolism , Magnesium/metabolism , Nephrocalcinosis/drug therapy , Nephrocalcinosis/metabolism
7.
Pflugers Arch ; 475(2): 277-281, 2023 02.
Article in English | MEDLINE | ID: mdl-36418493

ABSTRACT

The concept of solvent drag, i.e., water and solutes sharing the same pore and their transport being frictionally coupled, was first proposed in the early 1950s. During the following decades, it was applied to transport processes across cell membranes as well as transport along the paracellular pathway. Water-driven solute transport was proposed as the major mechanism for electrolyte and nutrient absorption in the small intestine and for Cl- and HCO3- reabsorption in the renal proximal tubule. With the discovery of aquaporins as transcellular route for water transport and the claudin protein family as the major determinant of paracellular transport properties, new mechanistic insights in transepithelial water and solute transport are emerging and call for a reassessment of the solvent drag concept. Current knowledge does not provide a molecular basis for relevant solvent drag-driven, paracellular nutrient, and inorganic anion (re-)absorption. For inorganic cation transport, in contrast, solvent drag along claudin-2-formed paracellular channels appears feasible.


Subject(s)
Kidney Tubules, Proximal , Water , Kidney Tubules, Proximal/metabolism , Biological Transport , Ion Transport , Water/metabolism , Solvents/metabolism , Tight Junctions/metabolism
8.
Front Immunol ; 13: 955161, 2022.
Article in English | MEDLINE | ID: mdl-35967390

ABSTRACT

Background: Cholinergic urticaria (CholU), a frequent form of chronic inducible urticaria, is characterized by itchy wheals and angioedema in response to sweating. As of now, the rate and pathophysiological relevance of impaired sweating in patients with CholU are ill-defined. Aim: To assess in CholU patients the rate and extent of impaired sweating and its links to clinical and pathophysiological features of CholU. Patients and methods: We assessed sweating in patients with CholU (n = 13) subjected to pulse-controlled ergometry (PCE) provocation testing. Pre- and post-PCE biopsies of lesional (L) and non-lesional (NL) skin were analyzed for the expression of acetylcholine receptor M3 (CHRM3) and acetylcholine esterase (ACh-E) by quantitative histomorphometry and compared to those of healthy control subjects (HCs). CholU patients were assessed for disease duration and severity as well as other clinical features. Results: Of the 13 patients with CholU, 10 showed reduced sweating in response to PCE provocation, and 3 had severely reduced sweating. Reduced sweating was linked to long disease duration and high disease severity. CholU patients with impaired sweating responses showed reduced sweat gland epithelial expression of CHRM3 and ACh-E. Conclusion: Reduced sweating is common in CholU patients, especially in those with long-standing and severe disease, and it can be severe. Reduced expression of CHRM3 and ACh-E may be the cause or consequence of CholU in patients with impaired sweating, and this should be explored by further studies.


Subject(s)
Acetylcholinesterase , Receptor, Muscarinic M3 , Sweat Glands , Sweating , Urticaria , Acetylcholine/metabolism , Acetylcholinesterase/biosynthesis , Acetylcholinesterase/metabolism , Cholinergic Agents , Humans , Receptor, Muscarinic M3/metabolism , Receptors, Cholinergic , Sweat Glands/metabolism , Sweat Glands/pathology , Sweating/physiology , Urticaria/complications , Urticaria/metabolism
9.
Nat Commun ; 13(1): 4985, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008380

ABSTRACT

The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions.


Subject(s)
Claudins , Tight Junctions , Animals , Claudins/genetics , Epithelial Cells , Epithelium , Humans , Ions , Mammals
10.
Ann N Y Acad Sci ; 1517(1): 266-278, 2022 11.
Article in English | MEDLINE | ID: mdl-35996827

ABSTRACT

Claudin-10b is an important component of the tight junction in the thick ascending limb (TAL) of Henle's loop and allows paracellular sodium transport. In immunofluorescence stainings, claudin-10b-positive cells exhibited extensive extra staining of basolateral, column-like structures. The precise localization and function have so far remained elusive. In isolated cortical TAL segments from C57BL/6J mice, kidney-specific claudin-10 knockout mice (cKO), and respective litter mates (WT), we investigated the localization and protein expression and function by fluorescence microscopy and electrophysiological measurements. Ultrastructural analysis of TAL in kidney sections was performed by electron microscopy. Claudin-10b colocalized with the basolateral Na+ -K+ ATPase and the Cl- channel subunit barttin, but the lack of claudin-10b did not influence the localization or abundance of these proteins. However, the accessibility of the basolateral infolded extracellular space to ouabain or fluorescein was increased by basolateral Ca2+ removal and in the absence of claudin-10b. Ultrastructural analysis by electron microscopy revealed a widening of basolateral membrane infoldings in cKO in comparison to WT. We hypothesize that claudin-10b shapes neighboring membrane invaginations by trans interaction to stabilize and facilitate high-flux salt transport in a water-tight epithelium.


Subject(s)
Claudins , Loop of Henle , Mice , Animals , Loop of Henle/metabolism , Mice, Inbred C57BL , Claudins/genetics , Claudins/metabolism , Tight Junctions/metabolism , Sodium/metabolism , Mice, Knockout
11.
Ann N Y Acad Sci ; 1517(1): 251-265, 2022 11.
Article in English | MEDLINE | ID: mdl-35994210

ABSTRACT

Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.


Subject(s)
Claudins , Epidermis , Humans , Claudins/metabolism , Claudin-1/metabolism , Claudin-4/metabolism , Epidermis/metabolism , Permeability , Tight Junctions/metabolism , Claudin-5/metabolism
12.
Genes Dis ; 9(5): 1301-1314, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35873018

ABSTRACT

Formation of claudin-10 based tight junctions (TJs) is paramount to paracellular Na+ transport in multiple epithelia. Sequence variants in CLDN10 have been linked to HELIX syndrome, a salt-losing tubulopathy with altered handling of divalent cations accompanied by dysfunctional salivary, sweat, and lacrimal glands. Here, we investigate molecular basis and phenotypic consequences of a newly identified homozygous CLDN10 variant that translates into a single amino acid substitution within the fourth transmembrane helix of claudin-10. In addition to hypohidrosis (H), electrolyte (E) imbalance with impaired urine concentrating ability, and hypolacrimia (L), phenotypic findings include altered salivary electrolyte composition and amelogenesis imperfecta but neither ichthyosis (I) nor xerostomia (X). Employing cellular TJ reconstitution assays, we demonstrate perturbation of cis- and trans-interactions between mutant claudin-10 proteins. Ultrastructures of reconstituted TJ strands show disturbed continuity and reduced abundance in the mutant case. Throughout, both major isoforms, claudin-10a and claudin-10b, are differentially affected with claudin-10b showing more severe molecular alterations. However, expression of the mutant in renal epithelial cells with endogenous TJs results in wild-type-like ion selectivity and conductivity, indicating that aberrant claudin-10 is generally capable of forming functional paracellular channels. Thus, mutant proteins prove pathogenic by compromising claudin-10 TJ strand assembly. Additional ex vivo investigations indicate their insertion into TJs to occur in a tissue-specific manner.

13.
Ann N Y Acad Sci ; 1515(1): 129-142, 2022 09.
Article in English | MEDLINE | ID: mdl-35650657

ABSTRACT

Although functional and structural models for paracellular channels formed by claudins have been reported, mechanisms regulating charge and size selectivity of these channels are unknown in detail. Here, claudin-15 and claudin-10b cation channels showing high-sequence similarity but differing channel properties were analyzed. Mutants of pore-lining residues were expressed in MDCK-C7 cells. In claudin-15, proposed ion interaction sites (D55 and E64) conserved between both claudins were neutralized. D55N and E64Q substitutions decreased ion permeabilities, and D55N/E64Q had partly additive effects. D55N increased cation dehydration capability and decreased pore diameter. Additionally, residues differing between claudin-15 and -10b close to pore center were analyzed. Claudin-10b-mimicking W63K affected neither assembly nor function of claudin-15 channels. In contrast, in claudin-10b, corresponding (claudin-15b-mimicking) K64W and K64M substitutions disturbed integration into tight junction and slightly altered relative permeabilities for differently sized monovalent cations. Removal of claudin-10b-specific negative charge (D36A substitution) was without effect. The data suggest that a common tetra-aspartate ring (D55/D56) in pore center of claudin-15/-10b channels directly attracts cations, while E64/D65 may be at least partly shielded by W63/K64. Charge at position W63/K64 affects assembly and properties for claudin-10b but not for claudin-15 channels. Our findings add to the mechanistic understanding of the determinants of paracellular cation permeability.


Subject(s)
Aspartic Acid , Tight Junctions , Cations, Monovalent , Claudin-4 , Claudins/chemistry , Claudins/genetics , Humans
14.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Article in English | MEDLINE | ID: mdl-35031570

ABSTRACT

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Subject(s)
Claudin-2 , Claudins/metabolism , Animals , Cations/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Permeability , Tight Junctions/physiology
15.
Allergy ; 76(10): 3094-3106, 2021 10.
Article in English | MEDLINE | ID: mdl-33844311

ABSTRACT

BACKGROUND: Expression of the tight junction proteins Cldn1 and 4 is altered in skin diseases such as atopic dermatitis, and Cldn1 deficiency affects skin barrier formation. Impedance spectroscopy (IS) has been proven to allow detection of alterations in the skin barrier but is currently unable to separate effects on viable epidermis (VE) and stratum corneum (SC). METHODS: Effects of siRNA-mediated Cldn1 and 4 knockdown in reconstructed human epidermis (RHE) on VE and SC barrier function were investigated with Ussing chamber-based IS. Barrier components were sequentially altered, employing iron oxide nanoparticles and EGTA, to identify their contribution to the impedance spectrum. Resistance changes due to apically applied hyperosmolar electrolyte were used to identify barrier defects non-invasively. RESULTS: IS of RHE yielded two relaxation frequencies, representing the barrier properties of the SC (~1000 Hz) and VE (~100 Hz). As proof of concept, it was shown that the Cldn1 knockdown-induced resistance drop arises from the impairment of both SC and VE, indicated by a shift of both relaxation frequencies. Hyperosmolar electrolyte penetration allowed non-invasive detection of Cldn1 knockdown via time-dependent frequency shifts. The absence of Cldn4 knockdown-induced changes revealed the weaknesses of transepithelial electrical resistance analysis. CONCLUSION: In conclusion, the present technique allows to separately measure the barrier properties of SC and VE and further evaluate the Cldn1 and 4 knockdown impact on the skin barrier. As the measurement with agarose-embedded electrolyte allowed non-invasive identification of the Cldn1 knockdown, this opens the way to detailed in vivo skin barrier assessment.


Subject(s)
Dermatitis, Atopic , Dielectric Spectroscopy , Epidermal Cells , Epidermis , Humans , Skin , Tight Junctions
16.
Kidney Int ; 100(2): 415-429, 2021 08.
Article in English | MEDLINE | ID: mdl-33675844

ABSTRACT

HELIX syndrome, characterized by hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia due to claudin-10 (CLDN10) mutations, was recognized in 2017. Here we describe two unrelated Saudi families with this syndrome due to a novel CLDN10 mutation with a unique mechanism of CLDN10 inactivation. The two consanguineous families include 12 affected individuals (three siblings in family 1 and nine members in family 2). They presented with hypokalemia and the above-mentioned features of HELIX syndrome. The underlying mutation was detected by whole exome sequencing, confirmed by Sanger sequencing and functionally indicated by RT-PCR, electrophysiological studies and immunohistochemical staining of transfected HEK293 and MDCK C7 cells, and skin and kidney biopsy tissues. A novel biallelic single nucleotide deletion was identified in exon 5 of CLDN10 (NM_182848.3: c.647delC, p.P216Lfs∗19 for CLDN10a or NM_006984.4: c.653delC, p.P218Lfs∗21 for CLDN10b). The mutation led to frameshift and extension of the original termination codon by nine amino acids with loss of the C-terminus pdz-binding motif. Functional studies showed mRNA degradation and protein retention in intracellular compartments and that the pdz-binding motif is crucial for proper localization of claudin-10 in tight junctions. In the kidney, claudin-10 was replaced by translocation of claudin-2 (proximal tubule) and claudin-19 (thick ascending limb), and in the sweat gland by claudin-3 and occludin. However, these claudins did not functionally compensate for loss of claudin-10. Thus, this novel CLDN10 mutation identified in these two families disrupted the C-terminus pdz-binding motif of claudin-10 causing HELIX syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Claudins , Tight Junctions , Claudins/genetics , Consanguinity , HEK293 Cells , Humans , Lacrimal Apparatus/physiopathology , Mutation , Syndrome , Water-Electrolyte Balance , Xerostomia/genetics
17.
Biochim Biophys Acta Biomembr ; 1862(9): 183344, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32442419

ABSTRACT

Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.


Subject(s)
Claudins/genetics , Tight Junction Proteins/genetics , Tight Junctions/genetics , Animals , Claudins/chemistry , Mutation/genetics , Permeability , Protein Isoforms/genetics , Tight Junction Proteins/chemistry , Tight Junctions/chemistry , Vertebrates/genetics
18.
Vet Microbiol ; 243: 108632, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273011

ABSTRACT

Zinc treatment is beneficial for infectious diarrhea or colitis. This study aims to characterize the pathomechanisms of the epithelial barrier dysfunction caused by alpha-hemolysin (HlyA)-expressing Escherichia coli in the colon mucosa and the mitigating effects of zinc ions. We performed Ussing chamber experiments on porcine colon epithelium and infected the tissues with HlyA-producing E. coli. Colon mucosa from piglets was obtained from a feeding trial with defined normal or high dose zinc feeding (pre-conditioning). Additional to the zinc feeding, zinc was added to the luminal compartment of the Ussing chamber. Transepithelial electrical resistance (TER) was measured during the infection of the living tissue and subsequently the tissues were immuno-stained for confocal microscopy. Zinc applied to the luminal compartment was effective in preventing from E. coli-induced epithelial barrier dysfunction in Ussing chamber experiments. In contrast, zinc pre-conditioning of colon mucosae when zinc ions were missing subsequently in the luminal compartment was not sufficient to prevent epithelial barrier impairment during E. coli infection. The pathological changes caused by E. coli HlyA were alterations of tight junction proteins claudin-4 and claudin-5, focal leak formation, and cell exfoliation which reflected the paracellular barrier defect measured by a reduced TER. In microscopic analysis of luminal zinc-treated mucosae these changes were absent. In conclusion, continuous presence of unbound zinc ions in the luminal compartment is essential for the protective action of zinc against E. coli HlyA. This suggests the usage of zinc as therapeutic regimen, while prophylactic intervention by high dietary zinc loads may be less useful.


Subject(s)
Colon/drug effects , Escherichia coli Infections/pathology , Escherichia coli Proteins/metabolism , Hemolysin Proteins/metabolism , Intestinal Mucosa/drug effects , Zinc/pharmacology , Animal Feed , Animals , Colon/cytology , Colon/microbiology , Escherichia coli/pathogenicity , Escherichia coli Infections/prevention & control , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Organ Culture Techniques , Swine , Tight Junctions/drug effects , Tight Junctions/pathology
19.
Exp Eye Res ; 193: 107985, 2020 04.
Article in English | MEDLINE | ID: mdl-32092287

ABSTRACT

Strong communication and interaction between the retinal pigment epithelium (RPE) and the photoreceptor (PR) cells is essential for vision. RPE cells are essential for supporting and maintaining PR cells by transporting nutrients, waste products and ions, and phagocytosing photoreceptor outer segments (POS). POS phagocytosis follows a circadian pattern, taking place in the morning in human, mice and other organisms. However, it remains unknown whether other RPE processes follow a daily rhythm. To study the daily rhythm of RPE cells, we isolated murine RPE cells at six different time points during a 24 h period, after which RNA was isolated and sequenced. Murine RPE flatmounts were isolated at four different time points to study daily rhythm in protein abundance and localisation. EnrichR pathway analysis resulted in 13 significantly-enriched KEGG pathways (p < 0.01) of which seven showed a large number of overlapping genes. Several genes were involved in intracellular trafficking, possibly playing a role in nutrient transport, POS phagocytosis or membrane protein trafficking, with different expression patterns during the day-night cycle. Other genes were involved in actin cytoskeleton building, remodelling and crosslinking and showed a high expression in the morning, suggesting actin cytoskeleton remodelling at this time point. Finally, tight junction proteins Cldn2 and Cldn4 showed a difference in RNA and protein expression and tight junction localisation over time. Our study suggests that several important processes in the RPE follow a day-night rhythm, including intracellular trafficking, and processes involving the actin cytoskeleton and tight junctions. The differential protein localisation of Cldn2 in the RPE during the day-night cycle suggest that Cldn2 may facilitate paracellular water and sodium transport during the day.


Subject(s)
Circadian Rhythm/physiology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/metabolism , Tight Junction Proteins/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Retinal Pigment Epithelium/cytology , Tight Junction Proteins/biosynthesis
20.
Acta Physiol (Oxf) ; 228(1): e13334, 2020 01.
Article in English | MEDLINE | ID: mdl-31188544

ABSTRACT

AIM: Claudin-15 is mainly expressed in the small intestine and indirectly involved in glucose absorption. Similar to claudin-2 and -10b, claudin-15 is known to form a paracellular channel for small cations. Claudin-2, but not claudin-10b, also forms water channels. Here we experimentally tested whether claudin-15 also mediates water transport and if yes, whether water transport is Na+ -coupled, as seen for claudin-2. METHODS: MDCK C7 cells were stably transfected with claudin-15. Ion and water permeability were investigated in confluent monolayers of control and claudin-15-expressing cells. Water flux was induced by an osmotic or ionic gradient. RESULTS: Expression of claudin-15 in MDCK cells strongly increased cation permeability. The permeability ratios for monovalent cations indicated a passage of partially hydrated ions through the claudin-15 pore. Accordingly, its pore diameter was determined to be larger than that of claudin-2 and claudin-10b. Mannitol-induced water flux was elevated in claudin-15-expressing cells compared to control cells. In contrast to the Na+ -coupled water flux of claudin-2 channels, claudin-15-mediated water flux was inhibited by Na+ flux. Consequently, water flux was increased in Na+ -free solution. Likewise, Na+ flux was decreased after induction of water flux through claudin-15. CONCLUSION: Claudin-15, similar to claudin-2, forms a paracellular cation and water channel. In functional contrast to claudin-2, water and Na+ fluxes through claudin-15 inhibit each other. Claudin-15 allows Na+ to retain part of its hydration shell within the pore. This then reduces the simultaneous passage of additional water through the pore.


Subject(s)
Claudin-2/metabolism , Claudins/metabolism , Tight Junctions/physiology , Water/metabolism , Animals , Aquaporins/genetics , Aquaporins/metabolism , Claudin-2/genetics , Dogs , Gene Expression Regulation , Madin Darby Canine Kidney Cells , Sodium , Tight Junction Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...