Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 197(16): 2713-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26078445

ABSTRACT

UNLABELLED: The presumptive transcriptional regulator YjjQ has been identified as being virulence associated in avian pathogenic Escherichia coli (APEC). In this work, we characterize YjjQ as transcriptional repressor of the flhDC operon, encoding the master regulator of flagellar synthesis, and of additional loci. The latter include gfc (capsule 4 synthesis), ompC (outer membrane porin C), yfiRNB (regulated c-di-GMP synthesis), and loci of poorly defined function (ybhL and ymiA-yciX). We identify the YjjQ DNA-binding sites at the flhDC and gfc promoters and characterize a DNA-binding sequence motif present at all promoters found to be repressed by YjjQ. At the flhDC promoter, the YjjQ DNA-binding site overlaps the RcsA-RcsB DNA-binding site. RcsA-RcsB likewise represses the flhDC promoter, but the repression by YjjQ and that by RcsA-RcsB are independent of each other. These data suggest that YjjQ is an additional regulator involved in the complex control of flhDC at the level of transcription initiation. Furthermore, we show that YjjQ represses motility of the E. coli K-12 laboratory strain and of uropathogenic E. coli (UPEC) strains CFT073 and 536. Regulation of flhDC, yfiRNB, and additional loci by YjjQ may be features relevant for pathogenicity. IMPORTANCE: Escherichia coli is a commensal and pathogenic bacterium causing intra- and extraintestinal infections in humans and farm animals. The pathogenicity of E. coli strains is determined by their particular genome content, which includes essential and associated virulence factors that control the cellular physiology in the host environment. However, the gene pools of commensal and pathogenic E. coli are not clearly differentiated, and the function of virulence-associated loci needs to be characterized. In this study, we characterize the function of yjjQ, encoding a transcription regulator that was identified as being virulence associated in avian pathogenic E. coli (APEC). We characterize YjjQ as transcriptional repressor of flagellar motility and of additional loci related to pathogenicity.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genetic Loci , Transcription Factors/metabolism , Transcription, Genetic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenetic Repression , Escherichia coli Proteins/genetics , Operon/genetics , Promoter Regions, Genetic , Transcription Factors/genetics , Virulence Factors/genetics
2.
PLoS One ; 4(11): e7796, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19907658

ABSTRACT

The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens.


Subject(s)
Adhesins, Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli/genetics , Fimbriae, Bacterial/metabolism , Mutagenesis , Animals , Birds , Chickens , Dogs , Escherichia coli/metabolism , Fibroblasts/metabolism , Gene Deletion , Genetic Complementation Test , Microscopy, Electron/methods , Multigene Family , Mutation
3.
Mol Plant Pathol ; 10(2): 175-88, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19236567

ABSTRACT

Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.


Subject(s)
Bacterial Proteins/metabolism , Xanthomonas/pathogenicity , Cell Nucleus/ultrastructure , Ions , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Protein Transport , Subcellular Fractions/metabolism , Nicotiana/cytology , Nicotiana/microbiology , Nicotiana/ultrastructure , Transcription, Genetic , Vacuoles/ultrastructure , Virulence
4.
J Plant Physiol ; 163(3): 233-55, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16386329

ABSTRACT

Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.


Subject(s)
Bacterial Proteins/physiology , Plants/microbiology , Xanthomonas campestris/pathogenicity , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/physiology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Molecular Sequence Data , Multigene Family , Plant Cells , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Virulence , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism
5.
Plant J ; 42(2): 175-87, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15807781

ABSTRACT

The effector protein AvrBs3 from the bacterial phytopathogen Xanthomonas campestris pv. vesicatoria is translocated into the plant cell where it specifically induces hypertrophy symptoms or the hypersensitive reaction. Activity of AvrBs3 depends on nuclear localization signals (NLSs) and an acidic activation domain, suggesting a role in regulation of plant transcription. Here, we show that AvrBs3 dimerizes in the plant cell prior to its nuclear import. AvrBs3 deletion derivatives were tested in the yeast two-hybrid system revealing that the repeat region, which confers specific recognition in resistant plants and is crucial for virulence function, is also essential for the self-interaction. GST pull-down assays showed that the AvrBs3-AvrBs3 interaction occurs independent of plant proteins. Coexpression of two different inactive mutant AvrBs3 derivatives in Bs3-resistant pepper plants resulted in 'trans-complementation', i.e., the induction of a hypersensitive reaction. This clearly indicates that AvrBs3-dimerization occurs in planta. Interestingly, 'trans-complementation' was not observed in susceptible plants suggesting that wild-type homodimers are needed for the AvrBs3 virulence function in plants. Furthermore, a green fluorescent protein (GFP) fusion of AvrBs3 deleted in the NLSs (AvrBs3DeltaNLS-GFP), normally localized in the cytoplasm, was imported into the nucleus upon coexpression with wild-type AvrBs3 in Nicotiana benthamiana. Thus, AvrBs3 dimerization takes place in the cytoplasm of the plant cell prior to nuclear import. Given the fact that dimerization is a common feature of transcriptional regulators, our data are consistent with the idea that AvrBs3 manipulates expression of plant genes involved in the establishment of compatible and incompatible interactions.


Subject(s)
Bacterial Proteins/metabolism , Cytoplasm/metabolism , Plants/metabolism , Bacterial Proteins/physiology , Capsicum/metabolism , Chromosome Mapping , Gene Expression/physiology , Mutation , Organisms, Genetically Modified , Plant Diseases , Plants/microbiology , Protein Binding , Protein Transport , Saccharomyces cerevisiae , Nicotiana/metabolism , Transcription Activator-Like Effectors
6.
Mol Microbiol ; 54(3): 755-68, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15491365

ABSTRACT

The hrp (hypersensitive response and pathogenicity) gene cluster of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria encodes a type III secretion (TTS) system, which injects bacterial effector proteins into the plant cell. Here, we characterized hpaB (hpa, hrp-associated), which encodes a pathogenicity factor with typical features of a TTS chaperone. We show that HpaB is important for the efficient secretion of at least five effector proteins but is dispensable for the secretion of non-effectors such as XopA and the TTS translocon protein HrpF. GST pull-down assays revealed that HpaB interacts with two unrelated effector proteins, AvrBs1 and AvrBs3, but not with XopA. The HpaB-binding site is located within the first 50 amino acids of AvrBs3. This region also contains the targeting signal for HpaB-dependent secretion, which is missing in HrpF and XopA. Intriguingly, the N-termini of HrpF and XopA target the AvrBs3Delta2 reporter for translocation in a DeltahpaB mutant but not in the wild-type strain. This indicates that HpaB plays an essential role in the exit control of the TTS system. Our data suggest that HpaB promotes the secretion of a large set of effector proteins and prevents the delivery of non-effectors into the plant cell.


Subject(s)
Bacterial Proteins/metabolism , Xanthomonas campestris/metabolism , Xanthomonas campestris/pathogenicity , Bacterial Proteins/genetics , Genes, Bacterial , Multigene Family , Plants/microbiology , Protein Binding , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Activator-Like Effectors , Xanthomonas campestris/genetics
7.
Plant J ; 37(1): 46-60, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14675431

ABSTRACT

The Lycopersicon esculentum Bs4 resistance (R) gene specifies recognition of Xanthomonas campestris pv. vesicatoria (Xcv) strains that express the cognate AvrBs4 avirulence protein. Bs4 was isolated by positional cloning and is predicted to encode a nucleotide-binding leucine-rich repeat (NB-LRR) protein that is homologous to tobacco N and potato Y-1 resistance proteins. Xcv infection tests demonstrate that Bs4 confers perception of AvrBs4 but not the 97% identical AvrBs3 protein. However, when delivered via Agrobacterium T-DNA transfer, both, avrBs4 and avrBs3 trigger a Bs4-dependent hypersensitive response, indicating that naturally occurring AvrBs3-homologues provide a unique experimental platform for molecular dissection of recognition specificity. Transcript studies revealed intron retention in Bs4 transcripts. Yet, an intron-deprived Bs4 derivative still mediates AvrBs4 detection, suggesting that the identified splice variants are not crucial to resistance. The L. pennellii bs4 allele, which is >98% identical to L. esculentum Bs4, has a Bs4-like exon-intron structure with exception of a splice polymorphism in intron 2 that causes truncation of the predicted bs4 protein. To test if the receptor-ligand model is a valid molecular description of Bs4-mediated AvrBs4 perception, we conducted yeast two-hybrid studies. However, a direct interaction was not observed. Defense signaling of the Bs4-governed reaction was studied in Nicotiana benthamiana by virus-induced gene silencing and showed that Bs4-mediated resistance is EDS1- and SGT1-dependent.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Agrobacterium tumefaciens/genetics , Alternative Splicing/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , Chromosome Mapping , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Immunity, Innate/genetics , Leucine-Rich Repeat Proteins , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Molecular Sequence Data , Mutation , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Polymerase Chain Reaction , Proteins/genetics , Proteins/metabolism , Sequence Homology, Amino Acid , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Activator-Like Effectors
SELECTION OF CITATIONS
SEARCH DETAIL
...