Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 3(5): 651-664, 2021 05.
Article in English | MEDLINE | ID: mdl-33972798

ABSTRACT

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Nucleoside Transport Proteins/metabolism , Purines/metabolism , Solute Carrier Proteins/metabolism , Transcription Factors/metabolism , Adenine/metabolism , Biosynthetic Pathways , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , Chromatin/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Membrane Transport Proteins , Models, Biological , Solute Carrier Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription, Genetic
2.
Nat Commun ; 11(1): 6145, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262325

ABSTRACT

About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.


Subject(s)
Epistasis, Genetic , Mitochondria/metabolism , NAD/metabolism , Uncoupling Protein 1/metabolism , Biological Transport , Humans , Mitochondria/genetics , Oxidation-Reduction , Uncoupling Protein 1/genetics
4.
Nat Chem Biol ; 16(4): 469-478, 2020 04.
Article in English | MEDLINE | ID: mdl-32152546

ABSTRACT

Solute carriers (SLCs) are the largest family of transmembrane transporters in humans and are major determinants of cellular metabolism. Several SLCs have been shown to be required for the uptake of chemical compounds into cellular systems, but systematic surveys of transporter-drug relationships in human cells are currently lacking. We performed a series of genetic screens in a haploid human cell line against 60 cytotoxic compounds representative of the chemical space populated by approved drugs. By using an SLC-focused CRISPR-Cas9 library, we identified transporters whose absence induced resistance to the drugs tested. This included dependencies involving the transporters SLC11A2/SLC16A1 for artemisinin derivatives and SLC35A2/SLC38A5 for cisplatin. The functional dependence on SLCs observed for a significant proportion of the screened compounds suggests a widespread role for SLCs in the uptake and cellular activity of cytotoxic drugs and provides an experimentally validated set of SLC-drug associations for a number of clinically relevant compounds.


Subject(s)
Drug Resistance/genetics , Solute Carrier Proteins/metabolism , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Antineoplastic Agents , Biochemical Phenomena , Biological Transport/genetics , Biological Transport/physiology , CRISPR-Cas Systems , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Drug Resistance/physiology , Genetic Testing , Humans , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Protein Transport/physiology , Solute Carrier Proteins/physiology , Symporters/genetics , Symporters/metabolism
5.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32106111

ABSTRACT

Patients with active acromegaly (ACRO) exhibit low hepatocellular lipids (HCL), despite pronounced insulin resistance (IR). This contrasts the strong association of IR with nonalcoholic fatty liver disease in the general population. Since low HCL levels in ACRO might be caused by changes in oxidative substrate metabolism, we investigated mitochondrial activity and plasma metabolomics/lipidomics in active ACRO. Fifteen subjects with ACRO and seventeen healthy controls, matched for age, BMI, sex, and body composition, underwent 31P/1H-7-T MR spectroscopy of the liver and skeletal muscle as well as plasma metabolomic profiling and an oral glucose tolerance test. Subjects with ACRO showed significantly lower HCL levels, but the ATP synthesis rate was significantly increased compared with that in controls. Furthermore, a decreased ratio of unsaturated-to-saturated intrahepatocellular fatty acids was found in subjects with ACRO. Within assessed plasma lipids, lipidomics, and metabolomics, decreased carnitine species also indicated increased mitochondrial activity. We therefore concluded that excess of growth hormone (GH) in humans counteracts HCL accumulation by increased hepatic ATP synthesis. This was accompanied by a decreased ratio of unsaturated-to-saturated lipids in hepatocytes and by a metabolomic profile, reflecting the increase in mitochondrial activity. Thus, these findings help to better understanding of GH-regulated antisteatotic pathways and provide a better insight into potentially novel therapeutic targets for treating NAFLD.


Subject(s)
Acromegaly/metabolism , Adenosine Triphosphate/biosynthesis , Lipid Metabolism , Liver/metabolism , Adult , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Muscle, Skeletal/metabolism
6.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31784108

ABSTRACT

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon Type I/immunology , Liver/metabolism , Lymphocytic choriomeningitis virus/immunology , Receptor, Interferon alpha-beta/metabolism , Animals , Arginine/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Hepatocytes/metabolism , Liver/immunology , Liver/virology , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ornithine/blood , Ornithine Carbamoyltransferase/genetics , Signal Transduction/immunology , Urea/metabolism , Vero Cells
7.
Nat Genet ; 51(6): 990-998, 2019 06.
Article in English | MEDLINE | ID: mdl-31133746

ABSTRACT

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression; pharmacological inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin associated suggests a direct role for nuclear metabolism in the control of gene expression.


Subject(s)
Folic Acid/metabolism , Gene Expression Regulation , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Nucleus/metabolism , Chromatin/genetics , Gene Knockout Techniques , Humans , Loss of Function Mutation , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Protein Transport , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...