Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 669220, 2021.
Article in English | MEDLINE | ID: mdl-33995334

ABSTRACT

The Gram-positive Bacillus methanolicus shows plasmid-dependent methylotrophy. This facultative ribulose monophosphate (RuMP) cycle methylotroph possesses two fructose bisphosphate aldolases (FBA) with distinct kinetic properties. The chromosomally encoded FBAC is the major glycolytic aldolase. The gene for the major gluconeogenic aldolase FBAP is found on the natural plasmid pBM19 and is induced during methylotrophic growth. The crystal structures of both enzymes were solved at 2.2 Å and 2.0 Å, respectively, and they suggested amino acid residue 51 to be crucial for binding fructose-1,6-bisphosphate (FBP) as substrate and amino acid residue 140 for active site zinc atom coordination. As FBAC and FBAP differed at these positions, site-directed mutagenesis (SDM) was performed to exchange one or both amino acid residues of the respective proteins. The aldol cleavage reaction was negatively affected by the amino acid exchanges that led to a complete loss of glycolytic activity of FBAP. However, both FBAC and FBAP maintained gluconeogenic aldol condensation activity, and the amino acid exchanges improved the catalytic efficiency of the major glycolytic aldolase FBAC in gluconeogenic direction at least 3-fold. These results confirmed the importance of the structural differences between FBAC and FBAP concerning their distinct enzymatic properties. In order to investigate the physiological roles of both aldolases, the expression of their genes was repressed individually by CRISPR interference (CRISPRi). The fba C RNA levels were reduced by CRISPRi, but concomitantly the fba P RNA levels were increased. Vice versa, a similar compensatory increase of the fba C RNA levels was observed when fba P was repressed by CRISPRi. In addition, targeting fba P decreased tkt P RNA levels since both genes are cotranscribed in a bicistronic operon. However, reduced tkt P RNA levels were not compensated for by increased RNA levels of the chromosomal transketolase gene tkt C.

2.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33638637

ABSTRACT

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Conserved Sequence , Embryophyta/enzymology , Evolution, Molecular , Acylation , Acyltransferases/deficiency , Biocatalysis , Bryophyta/enzymology , Embryophyta/genetics , Gene Expression Regulation, Enzymologic , Genes, Plant , Kinetics , Models, Biological , Phenols/metabolism , Phylogeny , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Shikimic Acid/chemistry , Shikimic Acid/metabolism
3.
Plant J ; 103(3): 1140-1154, 2020 08.
Article in English | MEDLINE | ID: mdl-32365245

ABSTRACT

Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.


Subject(s)
Chloroplasts/metabolism , Glutathione Reductase/metabolism , Photosynthesis , Reactive Oxygen Species/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Bryopsida/enzymology , Bryopsida/metabolism , Bryopsida/physiology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Chloroplasts/enzymology , Chloroplasts/physiology , Gene Knockout Techniques , Glutathione/metabolism , Glutathione Reductase/physiology , Oxidation-Reduction
4.
Plant Sci ; 255: 1-11, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28131337

ABSTRACT

Redox regulation of chloroplast enzymes via disulphide reduction is believed to control the rates of CO2 fixation. The study of the thioredoxin reduction pathways and of various target enzymes lead to the following guidelines.


Subject(s)
Carbon Dioxide/metabolism , Chloroplast Thioredoxins/metabolism , Chloroplasts/metabolism , Disulfides/metabolism , Photosynthesis/physiology , Plants/metabolism , Toluene/analogs & derivatives , Biological Evolution , Chloroplasts/enzymology , Oxidation-Reduction , Toluene/metabolism
5.
Proc Natl Acad Sci U S A ; 113(24): 6779-84, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27226308

ABSTRACT

The Calvin-Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatory members of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPase) is particularly scanty, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPase), in both cases from the moss Physcomitrella patens (Pp). Overall, the moss enzymes resembled their counterparts from seed plants, including oligomeric organization-PpSBPase is a dimer, and PpFBPase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner accounting for their specificity for seven-carbon (sedoheptulose) and six-carbon (fructose) sugar bisphosphate substrates. The two enzymes had a similar redox potential for their regulatory redox-active disulfides (-310 mV for PpSBPase vs. -290 mV for PpFBPase), requirement for Mg(2+) and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism-namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin.


Subject(s)
Bryopsida , Chloroplast Proteins , Evolution, Molecular , Fructose-Bisphosphatase , Phosphoric Monoester Hydrolases , Thioredoxins , Bryopsida/enzymology , Bryopsida/genetics , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...