Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299785, 2024.
Article in English | MEDLINE | ID: mdl-38598442

ABSTRACT

Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 µg TPF g-1 soil hr-1), arylsulfatase activity (82.8 µg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.


Subject(s)
Soil , Triticum , Triticum/genetics , Water/analysis , Chlorophyll , Biomass , Edible Grain/chemistry
2.
PLoS One ; 18(7): e0284009, 2023.
Article in English | MEDLINE | ID: mdl-37406009

ABSTRACT

One of the biggest challenges to be addressed in world agriculture is low nitrogen (N) use efficiency (<40%). To address this issue, researchers have repeatedly underlined the need for greater emphasis on the development and promotion of energy efficient, and environmentally sound novel fertilizers, in addition to improved agronomic management to augment nutrient use efficiency for restoring soil fertility and increasing farm profit. Hence, a fixed plot field experiment was conducted to assess the economic and environmental competency of conventional fertilizers with and without nano-urea (novel fertilizer) in two predominant cropping systems viz., maize-wheat and pearl millet-mustard under semi-arid regions of India. Result indicates that the supply of 75% recommended N with conventional fertilizer along with nano-urea spray (N75PK+nano-urea) reduced the energy requirement by ~8-11% and increased energy use efficiency by ~6-9% over 100% nitrogen through prilled urea fertilizer (business as usual). Furthermore, the application of N75PK+ nano-urea exhibited ~14% higher economic yields in all the crops compared with N50PK+ nano-urea. Application of N75PK+nano-urea registered comparable soil N and dehydrogenase activities (35.8 µg TPF g-1 24 hrs-1 across all crops) over the conventional fertilization (N100PK). This indicates that application of foliar spray of nano-urea with 75% N is a soil supportive production approach. More interestingly, two foliar sprays of nano-urea curtailed nitrogen load by 25% without any yield penalty, besides reducing the greenhouse gases (GHG) emission from 164.2 to 416.5 kg CO2-eq ha-1 under different crops. Therefore, the application of nano-urea along with 75% N through prilled urea is an energy efficient, environmentally robust and economically feasible nutrient management approach for sustainable crop production.


Subject(s)
Fertilizers , Urea , Conservation of Energy Resources , Agriculture , Soil , Crop Production , Nitrogen/analysis , Zea mays , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL
...