Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 7(2): 174-182, 2019 02.
Article in English | MEDLINE | ID: mdl-30679156

ABSTRACT

T-cell recognition of cancer neoantigens is important for effective immune-checkpoint blockade therapy, and an increasing interest exists in developing personalized tumor neoantigen vaccines. Previous studies utilizing RNA and long-peptide neoantigen vaccines in preclinical and early-phase clinical studies have shown immune responses predominantly driven by MHC class II CD4+ T cells. Here, we report on a preclinical study utilizing a DNA vaccine platform to target tumor neoantigens. We showed that optimized strings of tumor neoantigens, when delivered by potent electroporation-mediated DNA delivery, were immunogenic and generated predominantly MHC class I-restricted, CD8+ T-cell responses. High MHC class I affinity was associated specifically with immunogenic CD8+ T-cell epitopes. These DNA neoantigen vaccines induced a therapeutic antitumor response in vivo, and neoantigen-specific T cells expanded from immunized mice directly killed tumor cells ex vivo These data illustrate a unique advantage of this DNA platform to drive CD8+ T-cell immunity for neoantigen immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Vaccines, DNA/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/chemical synthesis , Cytotoxicity, Immunologic , Melanoma, Experimental , Mice , Neoplasms/immunology , Neoplasms/therapy , Vaccines, DNA/chemical synthesis , Vaccinology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...