Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0299925, 2024.
Article in English | MEDLINE | ID: mdl-38739571

ABSTRACT

The quest for higher spatial and/or temporal resolution in functional MRI (fMRI) while preserving a sufficient temporal signal-to-noise ratio (tSNR) has generated a tremendous amount of methodological contributions in the last decade ranging from Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging and/or compressed sensing (CS) accelerations and simultaneous multi-slice acquisitions to cite a few. In this paper, we investigate the use of a finely tuned version of 3D-SPARKLING. This is a non-Cartesian CS-based acquisition technique for high spatial resolution whole-brain fMRI. We compare it to state-of-the-art Cartesian 3D-EPI during both a retinotopic mapping paradigm and resting-state acquisitions at 1mm3 (isotropic spatial resolution). This study involves six healthy volunteers and both acquisition sequences were run on each individual in a randomly-balanced order across subjects. The performances of both acquisition techniques are compared to each other in regards to tSNR, sensitivity to the BOLD effect and spatial specificity. Our findings reveal that 3D-SPARKLING has a higher tSNR than 3D-EPI, an improved sensitivity to detect the BOLD contrast in the gray matter, and an improved spatial specificity. Compared to 3D-EPI, 3D-SPARKLING yields, on average, 7% more activated voxels in the gray matter relative to the total number of activated voxels.


Subject(s)
Brain Mapping , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Humans , Adult , Magnetic Resonance Imaging/methods , Male , Brain Mapping/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Brain/physiology , Female , Echo-Planar Imaging/methods , Young Adult
2.
IEEE Trans Med Imaging ; 41(7): 1625-1638, 2022 07.
Article in English | MEDLINE | ID: mdl-35041598

ABSTRACT

Deep Learning has become a very promising avenue for magnetic resonance image (MRI) reconstruction. In this work, we explore the potential of unrolled networks for non-Cartesian acquisition settings. We design the NC-PDNet (Non-Cartesian Primal Dual Netwok), the first density-compensated (DCp) unrolled neural network, and validate the need for its key components via an ablation study. Moreover, we conduct some generalizability experiments to test this network in out-of-distribution settings, for example training on knee data and validating on brain data. The results show that NC-PDNet outperforms baseline (U-Net, Deep image prior) models both visually and quantitatively in all settings. In particular, in the 2D multi-coil acquisition scenario, the NC-PDNet provides up to a 1.2 dB improvement in peak signal-to-noise ratio (PSNR) over baseline networks, while also allowing a gain of at least 1dB in PSNR in generalization settings. We provide the open-source implementation of NC-PDNet, and in particular the Non-uniform Fourier Transform in TensorFlow, tested on 2D multi-coil and 3D single-coil k-space data.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...