Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Appl Oral Sci ; 32: e20240018, 2024.
Article in English | MEDLINE | ID: mdl-38896641

ABSTRACT

OBJECTIVE: This study aimed to validate the integrated correlation between the buccal bone and gingival thickness of the anterior maxilla, and to gain insight into the reference plane selection when measuring these two tissues before treatment with implants. METHODOLOGY: Cone beam computed tomography (CBCT) and model scans of 350 human subjects were registered in the coDiagnostiX software to obtain sagittal maxillary incisor sections. The buccal bone thickness was measured at the coronal (2, 4, and 6 mm apical to the cementoenamel junction [CEJ]) and apical (0, 2, and 4 mm coronal to the apex plane) regions. The buccal gingival thickness was measured at the supra-CEJ (0, 1mm coronal to the CEJ) and sub-CEJ regions (1, 2, 4, and 6 mm apical to the CEJ). Canonical correlation analysis was performed for intergroup correlation analysis and investigation of key parameters. RESULTS: The mean thicknesses of the buccal bone and gingiva at different levels were 0.64~1.88 mm and 0.66~1.37 mm, respectively. There was a strong intergroup canonical correlation between the thickness of the buccal bone and that of the gingiva (r=0.837). The thickness of the buccal bone and gingiva at 2 mm apical to the CEJ are the most important indices with the highest canonical correlation coefficient and loadings. The most and least prevalent subgroups were the thin bone and thick gingiva group (accounting for 47.6%) and the thick bone and thick gingiva group (accounting for 8.6%). CONCLUSION: Within the limitations of this retrospective study, the thickness of the buccal bone is significantly correlated with that of the buccal gingiva, and the 2 mm region apical to the CEJ is a vital plane for quantifying the thickness of these two tissues.


Subject(s)
Cone-Beam Computed Tomography , Gingiva , Incisor , Maxilla , Humans , Gingiva/anatomy & histology , Gingiva/diagnostic imaging , Cone-Beam Computed Tomography/methods , Incisor/diagnostic imaging , Incisor/anatomy & histology , Maxilla/anatomy & histology , Maxilla/diagnostic imaging , Female , Male , Adult , Young Adult , Reference Values , Reproducibility of Results , Alveolar Process/diagnostic imaging , Alveolar Process/anatomy & histology , Middle Aged , Adolescent , Retrospective Studies
2.
Eur J Dent Educ ; 28(2): 621-630, 2024 May.
Article in English | MEDLINE | ID: mdl-38234068

ABSTRACT

INTRODUCTION: To summarize the development of Innovative Undergraduate Dental Talents Training Project (IUDTTP) and investigate the training effect of this extracurricular dental basic research education activity from 2015 to 2020 to obtain educational implications. MATERIALS AND METHODS: The Guanghua School of Stomatology established the IUDTTP in 2015. The authors recorded the development process and analysed the participation situation, training effect, academic performance and overall satisfaction during 2015-2020 through documental analysis, questionnaire and quiz. The t-test, chi-square test and ANOVA were used to test the difference. RESULTS: The educational goal, education module and assessment system of IUDTTP evolved and developed every year. A total of 336 students and 79 mentors attended the IUDTTP from 2015 to 2020, with the participation rate increasing from 45.1% to 73.5%. The participants exhibited favourable basic research abilities, manifesting as the increase of funded projects and published papers and satisfying quiz scores. Almost all students (94.94%) admitted their satisfaction with the IUDTTP. Moreover, the attended students surpassed the non-participants in terms of GPA, the number of acquired scholarships and outstanding graduates (p < .05). Likewise, the enrolment rate of postgraduate participants was significantly higher than non-participants. CONCLUSIONS: To date, the training effect indicated that the IUDTTP has fulfilled the education aim. It brought positive effects on promoting research interest, cultivating research capacities and enhancing academic performance. The potential deficiencies of extracurricular educational activities, including inflexibility in schedule and insufficiency in systematisms, may be remedied by more systematic educational settings in the future.


Subject(s)
Education, Dental , Students , Humans , Retrospective Studies , Motivation
3.
Clin Oral Implants Res ; 35(3): 294-304, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112164

ABSTRACT

OBJECTIVES: To evaluate the impact of guide stabilizers and their application sequences on implant placement accuracy of guided implant surgery in multiple teeth loss at free end. MATERIALS AND METHODS: In this study, 96 implants were placed in the regions of #34, #36, and #37 of 32 identical mandibular models. The influence of using guide stabilizers or not (group A and group B) and various guide stabilizers application sequences (group B: #34 → #36 → #37; group C: #36 → #34 → #37; group D: #37 → #34 → #36) on implant placement trueness and precision was investigated. Data were analyzed using T-tests and one-way ANOVA. RESULTS: Group B showed significant benefits in enhancing implant placement precision. Compared to group A, it resulted in reducing 3D-deviation at crest and 2D deviation in vestibular-oral direction at both crest and apex. Furthermore, group D demonstrated greater improvement in global implant placement precision by reducing 2D deviation in mesial-distal direction at both crest and apex. Among the three different stabilizer application sequences, group D exhibited the highest level of implant placement precision. CONCLUSIONS: In cases of missing teeth at distal free end, the use of guide stabilizers and their application sequences does not have a significant impact on implant placement trueness. However, they do improve implant placement precision compared to methods that do not utilize guide stabilizers. Specifically, applying a guide stabilizer first at the furthest implant site to change teeth loss classification from free end to edentulous space with posterior support is the most reliable sequence.


Subject(s)
Dental Implants , Mouth, Edentulous , Surgery, Computer-Assisted , Tooth Loss , Humans , Dental Implantation, Endosseous/methods , Computer-Aided Design , Imaging, Three-Dimensional , Cone-Beam Computed Tomography
4.
J. appl. oral sci ; 32: e20240018, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558232

ABSTRACT

Abstract Objective This study aimed to validate the integrated correlation between the buccal bone and gingival thickness of the anterior maxilla, and to gain insight into the reference plane selection when measuring these two tissues before treatment with implants. Methodology Cone beam computed tomography (CBCT) and model scans of 350 human subjects were registered in the coDiagnostiX software to obtain sagittal maxillary incisor sections. The buccal bone thickness was measured at the coronal (2, 4, and 6 mm apical to the cementoenamel junction [CEJ]) and apical (0, 2, and 4 mm coronal to the apex plane) regions. The buccal gingival thickness was measured at the supra-CEJ (0, 1mm coronal to the CEJ) and sub-CEJ regions (1, 2, 4, and 6 mm apical to the CEJ). Canonical correlation analysis was performed for intergroup correlation analysis and investigation of key parameters. Results The mean thicknesses of the buccal bone and gingiva at different levels were 0.64~1.88 mm and 0.66~1.37 mm, respectively. There was a strong intergroup canonical correlation between the thickness of the buccal bone and that of the gingiva (r=0.837). The thickness of the buccal bone and gingiva at 2 mm apical to the CEJ are the most important indices with the highest canonical correlation coefficient and loadings. The most and least prevalent subgroups were the thin bone and thick gingiva group (accounting for 47.6%) and the thick bone and thick gingiva group (accounting for 8.6%). Conclusion Within the limitations of this retrospective study, the thickness of the buccal bone is significantly correlated with that of the buccal gingiva, and the 2 mm region apical to the CEJ is a vital plane for quantifying the thickness of these two tissues

5.
Quant Imaging Med Surg ; 13(12): 8053-8066, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106266

ABSTRACT

Background: The thickness of the buccal bone of the anterior maxilla is an important aesthetic-determining factor for dental implant, which is divided into the thick (≥1 mm) and thin type (<1 mm). However, as a micro-scale structure that is evaluated through low-resolution cone-beam computed tomography (CBCT), its thickness measurement is error-prone under the circumstance of enormous patients and relatively inexperienced primary dentists. Further, the challenges of deep learning-based analysis of the binary thickness of buccal bone include the substantial real-world variance caused by pixel error, the extraction of fine-grained features, and burdensome annotations. Methods: This study built bilinear convolutional neural network (BCNN) with 2 convolutional neural network (CNN) backbones and a bilinear pooling module to predict the binary thickness of buccal bone (thick or thin) of the anterior maxilla in an end-to-end manner. The methods of 5-fold cross-validation and model ensemble were adopted at the training and testing stages. The visualization methods of Gradient Weighted Class Activation Mapping (Grad-CAM), Guided Grad-CAM, and layer-wise relevance propagation (LRP) were used for revealing the important features on which the model focused. The performance metrics and efficacy were compared between BCNN, dentists of different clinical experience (i.e., dental student, junior dentist, and senior dentist), and the fusion of BCNN and dentists to investigate the clinical feasibility of BCNN. Results: Based on the dataset of 4,000 CBCT images from 1,000 patients (aged 36.15±13.09 years), the BCNN with visual geometry group (VGG)16 backbone achieved an accuracy of 0.870 [95% confidence interval (CI): 0.838-0.902] and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.924 (95% CI: 0.896-0.948). Compared with the conventional CNNs, BCNN precisely located the buccal bone wall over irrelevant regions. The BCNN generally outperformed the expert-level dentists. The clinical diagnostic performance of the dentists was improved with the assistance of BCNN. Conclusions: The application of BCNN to the quantitative analysis of binary buccal bone thickness validated the model's excellent ability of subtle feature extraction and achieved expert-level performance. This work signals the potential of fine-grained image recognition networks to the precise quantitative analysis of micro-scale structures.

6.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709143

ABSTRACT

BACKGROUND: Apical palatal bone is important in immediate implant evaluation. Current consensus gives qualitative suggestions regarding it, limiting its clinical decision-making value. OBJECTIVES: To quantify the apical palatal bone dimension in maxillary incisors and reveal its quantitative correlation with other implant-related hard tissue indices to give practical advice for pre-immediate implant evaluation and design. MATERIAL AND METHODS: A retrospective analysis of immediate implant-related hard tissue indices in maxillary incisors obtained by cone beam computed tomography (CBCT) was conducted. Palatal bone thickness at the apex level (Apical-P) on the sagittal section was selected as a parameter reflecting the apical palatal bone. Its quantitative correlation with other immediate implant-related hard tissue indices was revealed. Clinical advice of pre-immediate implant assessment was given based on the quantitative classification of Apical-P and its other correlated immediate implant-related hard tissue indices. RESULTS: Apical-P positively correlated with cervical palatal bone, whole cervical buccal-palatal bone, sagittal root angle, and basal bone width indices. while negatively correlated with apical buccal bone, cervical buccal bone, and basal bone length indices. Six quantitative categories of Apical-P are proposed. Cases with Apical-P below 4 mm had an insufficient apical bone thickness to accommodate the implant placement, while Apical-P beyond 12 mm should be cautious about the severe implant inclination. Cases with Apical-P of 4-12 mm can generally achieve satisfying immediate implant outcomes via regulating the implant inclination. CONCLUSIONS: Quantification of the apical palatal bone index for maxillary incisor immediate implant assessment can be achieved, providing a quantitative guide for immediate implant placement in the maxillary incisor zone.


Subject(s)
Alveolar Process , Incisor , Humans , Incisor/diagnostic imaging , Incisor/surgery , Cross-Sectional Studies , Alveolar Process/diagnostic imaging , Alveolar Process/surgery , Retrospective Studies , Palate , Maxilla/diagnostic imaging , Maxilla/surgery
7.
J Adv Res ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37597747

ABSTRACT

INTRODUCTION: Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES: This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS: In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS: The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFß and PI3K-Akt signaling pathway. CONCLUSION: The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.

8.
BMC Med Educ ; 22(1): 569, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35870929

ABSTRACT

BACKGROUND: Undergraduate dental basic research education (UDBRE) is broadly regarded as an important approach for cultivating scientific research talent. This scoping review aims to summarize the current status of UDBRE in terms of educational goals, teaching program and content, assessment system, training outcomes, barriers, and reflections. METHODS: The authors performed a systematic literature search in PubMed, Web of Science, and Education Resources Information Center (ERIC) to identify peer-reviewed articles written in English from their inception to January 29, 2021. Articles were reviewed and screened according to the inclusion and exclusion criteria. Related data from the included publications were then collected and summarized. RESULTS: The authors searched 646 publications and selected 16 articles to include in the study. The education goals included cultivating five major dental basic research capabilities (n=10, 62.5%) and developing interest in basic research (n=2, 12.5%). As for the teaching program, the mentor-guided student research project was the most popular (n=11, 68.8%), followed by didactic courses (n=5, 31.3%), experimental skills training (n=1, 6.3%), and the combination of the above forms (n=3, 18.8%). However, the assessment system and training outcome diverged. Existing evidence showed that UDBRE reached satisfying education outcomes. Barriers included excessive curriculum burden (n=2, 12.5%), tutor shortage (n=3, 18.8%), lack of financial support (n=5, 31.3%), and inadequate research skills and knowledge (n=5, 31.3%). CONCLUSIONS: Although efforts were made, the variation between studies revealed the immature status of UDBRE. A practical UDBRE education system paradigm was put forward. Meanwhile, more research is required to optimize a robust UDBRE system with clear education goals, well-designed teaching forms, and convincing assessment systems.


Subject(s)
Clinical Competence , Curriculum , Humans , Students
SELECTION OF CITATIONS
SEARCH DETAIL
...