Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.807
Filter
1.
Article in English | MEDLINE | ID: mdl-38953553

ABSTRACT

The incompatibility of ether electrolytes with a cathode dramatically limits its application in high-voltage Li metal batteries. Herein, we report a new highly concentrated binary salt ether-based electrolyte (HCBE, 1.25 M LiTFSI + 2.5 M LiFSI in DME) that enables stable cycling of high-voltage lithium metal batteries with the Ni-rich (NCM83, LiNi0.83Co0.12Mn0.05O2) cathode. Experimental characterizations and density functional theory (DFT) calculations reveal the special solvation structure in HCBE. A solvation structure rich in aggregates (AGGs) can effectively broaden the electrochemical window of the ether electrolyte. The anions in HCBE preferentially decompose under high voltage, forming a CEI film rich in inorganic components to protect the electrolyte from degradation. Thus, the high-energy-density Li||NCM83 cell has a capacity retention of ≈95% after 150 cycles. Significantly, the cells in HCBE have a high and stable average Coulombic efficiency of over 99.9%, much larger than that of 1 M LiPF6 + EC + EMC + DMC (99%). The result emphasizes that the anionic-driven formation of a cathode electrolyte interface (CEI) can reduce the number of interface side reactions and effectively protect the cathode. Furthermore, the Coulombic efficiency of Li||Cu using the HCBE is 98.5%, underscoring the advantages of using ether-based electrolytes. This work offers novel insights and approaches for the design of high-performance electrolytes for lithium metal batteries.

2.
Sci Rep ; 14(1): 15186, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956313

ABSTRACT

Influenza A virus subtype H1N1 can cause severe acute respiratory distress syndrome and death in young children and elderly individuals. H1N1 initiates inflammatory responses that aim to contain and eliminate microbial invaders. Various lipid mediators (LMs) are biosynthesized and play a critical role in fighting viruses during inflammation; thus, by profiling the LMs in patients, researchers can obtain mechanistic insights into diseases, such as the pathways disrupted. To date, the relationship between molecular alterations in LMs and the pathogenesis of H1N1 influenza in children is poorly understood. Here, we employed a targeted liquid chromatography coupled with tandem mass spectrometry (LC‒MS/MS) to profile LMs in serum from children with H1N1 influenza (H1N1 children) and recovered children. We found that 22 LM species were altered in H1N1 children with mild symptoms. Analysis of the LM profiles of recovered children revealed a decrease in the levels of thromboxane B2 (TxB2) and thromboxane B3 (TxB3) and an increase in the levels of other 8 altered LM species associated with H1N1 influenza, including cytochrome P450 (CYP) enzyme-derived dihydroxyeicosatrienoic acids (DiHETrEs) and hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA), and epoxyoctadecamonoenoic acids (EpOMEs) from linoleic acid (LA). Taken together, the results of this study revealed that serum LMs change dynamically in H1N1 children with mild symptoms. The dramatically altered LMs in H1N1 children could serve as a basis for potential therapeutics or adjuvants against H1N1 influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Tandem Mass Spectrometry , Humans , Influenza, Human/blood , Influenza, Human/virology , Child , Male , Female , Child, Preschool , Lipids/blood , Chromatography, Liquid , Infant , Lipidomics/methods
3.
Commun Biol ; 7(1): 809, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961268

ABSTRACT

During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.


Subject(s)
CRISPR-Cas Systems , Mouse Embryonic Stem Cells , Proto-Oncogene Proteins c-mdm2 , Animals , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Differentiation/genetics , Epigenesis, Genetic , Gene Expression Regulation, Developmental
4.
Heliyon ; 10(12): e32393, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975159

ABSTRACT

Objectives: Chemerin, as a novel multifunctional adipokine, is proposed to be involved in high cancer risk and mortality. The present study was aimed to evaluate the prognostic value of serum Chemerin and neutrophils in patients with oral squamous cell carcinoma (OSCC). Materials and methods: 120 patients with OSCC were included in this prospective cohort study. The levels of serum Chemerin were measured by enzyme-linked immunosorbent assay (ELISA). We also explored the possible effects of Chemerin on neutrophils' chemokines in OSCC using a real-time PCR, western blotting. Results: Levels of serum Chemerin, neutrophils and NLR were significantly higher among non-survivors compared to survivors of OSCC (both P < 0.05). Higher serum Chemerin levels were associated with advanced TNM stage, lymph node metastasis, differentiation and tumor recurrence (both P < 0.05). Serum Chemerin levels correlated with neutrophils and NLR levels (r = 0.708, r = 0.578, both P < 0.05). Based on ROC analysis, Chemerin + NLR predicted OSCC patient mortality with 81.54 % sensitivity and 87.27 % specificity, with an AUC of 0.8898. In a Kaplan-Meier analysis, high serum Chemerin levels, high neutrophil levels and high NLR levels were associated with shorter overall and disease-free survival (both P < 0.05). A univariate and multivariate Cox regression analysis showed that serum Chemerin and neutrophils were independent risk factors for OSCC. (both P < 0.05). QRT-PCR and western blotting results showed that Chemerin upregulated the expression of chemokines IL-17 and CXCL-5 in neutrophils (both P < 0.05). Conclusions: Our study suggests that measurement of serum Chemerin and neutrophils might be a useful diagnostic and prognostic biomarker for OSCC patients. Chemerin may promote neutrophils infiltration in OSCC through upregulation of chemokines IL17 and CXCL-5.

5.
Hortic Res ; 11(7): uhae125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966867

ABSTRACT

Jojoba is an industrial oil crop planted in tropical arid areas, and its low-temperature sensitivity prevents its introduction into temperate areas. Studying the molecular mechanisms associated with cold acclimation in jojoba is advantageous for developing breeds with enhanced cold tolerance. In this study, metabolomic analysis revealed that various flavonols accumulate in jojoba during cold acclimation. Time-course transcriptomic analysis and weighted correlation network analysis (WGCNA) demonstrated that flavonol biosynthesis and jasmonates (JAs) signaling pathways played crucial roles in cold acclimation. Combining the biochemical and genetic analyses showed that ScMYB12 directly activated flavonol synthase gene (ScFLS). The interaction between ScMYB12 and transparent testa 8 (ScTT8) promoted the expression of ScFLS, but the negative regulator ScJAZ13 in the JA signaling pathway interacted with ScTT8 to attenuate the transcriptional activity of the ScTT8 and ScMYB12 complex, leading to the downregulation of ScFLS. Cold acclimation stimulated the production of JA in jojoba leaves, promoted the degradation of ScJAZ13, and activated the transcriptional activity of ScTT8 and ScMYB12 complexes, leading to the accumulation of flavonols. Our findings reveal the molecular mechanism of JA-mediated flavonol biosynthesis during cold acclimation in jojoba and highlight the JA pathway as a promising means for enhancing cold tolerance in breeding efforts.

6.
Article in Chinese | MEDLINE | ID: mdl-38973044

ABSTRACT

Objective:To study the clinical anatomy of the sphenopalatine foramina by dissecting the sphenopalatine foramina during Vidian nerve branch neurotomy. The anatomy and CBCT images of sphenopalatine foramen were analyzed to facilitate the navigational of clinical operation using CBCT images. Methods:From October 2017 to September 2023, 84 cases(168 sides) of Vidian nerve branch neurotomy in our department were collected. The clinical summary was made according to the anatomy of sphenopalatine foramen during the operation. Preoperative CBCT imaging findings of the sphenopalatine foramina were also studied. Results:The clinical anatomy of sphenopalatine foramen could be divided into four types: middle meatus type(1.19%), trans-meatus type(62.29%), superior meatus type(33.33%) and double foramen type(1.19%). The incidence of ethmoidal ridge was 98.81%. The distance from sphenopalatine foramina to posterior nasal canal were(14.63±2.66) mm to left and(14.65±2.63) mm to right, The position Angle ∠a of lower margin of sphenopalatine foramina were(62.36±10.05)° to left and(61.51±11.82)° to right, respectively. Axial CT images can be used to divide the sphenopalatine foramen into five levels: the upper edge of the sphenopalatine foramen level, the Vidian nerve level, the basal plate interaction level, the lower edge of the sphenopalatine foramen level and the pterygopalatine canal level. The agreement between endoscopic anatomy of sphenopalatine foramen and imaging navigation was 100%. Conclusion:The sphenopalatine foramina exhibit various anatomical types. The preoperative navigational CBCT reading can effectively identify the type of sphenopalatine foramina, guide the choice of surgical method, and help avoid serious complications. This has significant clinical application value.


Subject(s)
Cone-Beam Computed Tomography , Endoscopy , Humans , Cone-Beam Computed Tomography/methods , Endoscopy/methods , Male , Female , Middle Aged , Sphenoid Bone/diagnostic imaging , Sphenoid Bone/anatomy & histology , Adult , Nasal Cavity/diagnostic imaging , Nasal Cavity/anatomy & histology
7.
Curr Pharm Des ; 30(17): 1377, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38975683

ABSTRACT

A typographical error appeared in the title of the article "Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophora Decoction", published in Current Pharmaceutical Design, 2022; 28(42): 3456-3468 [1]. Details of the error and a correction are provided below. Original: Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophora Decoction Corrected: Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophorae Decoction We regret the error and apologize to readers. The original article can be found online at: https://www.eurekaselect.com/article/127740.


Subject(s)
Colitis , Dextran Sulfate , HSP90 Heat-Shock Proteins , Animals , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Mice , Colitis/drug therapy , Colitis/chemically induced , Sophora/chemistry , MAP Kinase Signaling System/drug effects
8.
Reprod Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981995

ABSTRACT

Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.

9.
Opt Lett ; 49(13): 3624-3627, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950225

ABSTRACT

Slot-array antennas based on metallic waveguides have been widely used to generate pencil-beams, attracting attention due to their design simplicity and compact size. However, current slot-array antennas possess wavelength-scale profiles, which do not align optimally with the low-profile requisites of contemporary integrated communication and radar systems. Here, we propose a low-profile slot-array antenna designed specifically for the pencil-beam generation. Constructed with the two-dimensional-array (2D-array) slots situated on a sub-wavelength domino plasmon waveguide, the pencil-beam is generated with a peak gain of up to 21.6 dBi. Moreover, the generated pencil-beam allows for a wide scanning range of over 73.6° by adjusting the operating frequency from 45 to 65 GHz. Our research shows great potential for enhancing millimeter-wave radar capabilities and advancing communication systems.

10.
Endosc Ultrasound ; 13(2): 94-99, 2024.
Article in English | MEDLINE | ID: mdl-38947751

ABSTRACT

Background and Objectives: This study retrospectively evaluated the value of liquid-based cytology (LBC) alone for diagnosing pancreatic cystic neoplasms (PCNs) in a large sample and initially estimated factors that might affect LBC diagnostic ability. Methods: From April 2015 to October 2022, we prospectively enrolled 331 patients with suspected PCNs in our prospective database. Among them, 112 patients chosen to receive surgical resection were included. Only 96 patients who underwent EUS-guided cystic fluid LBC were finally studied. The diagnostic values of LBC for differentiating benign and malignant PCNs and subtypes of PCNs were evaluated. Results: There were 71 female and 25 male patients with a mean age of 47.6 ± 14.4 years. The median cyst size was 43.4 mm. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of LBC for the differentiation of benign and malignant PCNs were 96.9%, 57.1%, 100%, 100%, and 96.7%, respectively. The overall diagnostic accuracy of LBC for specific cyst types was 33.3% (32/96). Cysts located in the pancreatic body/tail or with irregular shapes were more likely to obtain a definite LBC diagnosis. At the same time, age, sex, tumor size, cystic fluid viscosity, operation time, needle type, and presence of septation were not significantly different. Conclusion: Liquid-based cytology alone is useful for differentiating benign PCNs from malignant PCNs and can successfully characterize the PCN subtypes in one-third of patients. Pancreatic cystic neoplasms located in the body/tail or exhibiting irregular shapes are more likely to obtain a definite LBC diagnosis.

11.
Neuroimage ; : 120726, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986794

ABSTRACT

Internet gaming disorder (IGD) prompts inquiry into how feedback from prior gaming rounds influences subsequent risk-taking behavior and potential neural mechanisms. Forty-two participants, including 15 with IGD and 27 health controls (HCs), underwent a sequential risk-taking task. Hierarchy Bayesian modeling was adopted to measure risky propensity, behavioral consistence, and affection by emotion ratings from last trial. Concurrent electroencephalogram and functional near-infrared spectroscopy (EEG-fNIRS) recordings were performed to demonstrate when, where and how the previous-round feedback affects the decision making to the next round. We discovered that the IGD illustrated heightened risk-taking propensity as compared to the HCs, indicating by the computational modeling (p = 0.028). EEG results also showed significant time window differences in univariate and multivariate pattern analysis between the IGD and HCs after the loss of the game. Further, reduced brain activation in the prefrontal cortex during the task was detected in IGD as compared to that of the control group. The findings underscore the importance of understanding the aberrant decision-making processes in IGD and suggest potential implications for future interventions and treatments aimed at addressing this behavioral addiction.

12.
J Cardiothorac Surg ; 19(1): 429, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987820

ABSTRACT

BACKGROUND: Patients requiring coronary artery bypass grafting (CABG) have multiple co-morbidities which need to be considered in totality when determining surgical risks. The objective of this study is to evaluate short-term and long-term mortality rates of CABG surgery, as well as to identify the most significant risk factors for mortality after isolated CABG. METHODS: All patients with complete dataset who underwent isolated CABG between January 2008 and December 2017 were included. Univariate and multivariate Cox regression was performed to determine the risk factors for all-cause mortality. Classification and regression tree analysis was performed to identify the relative importance of these risk factors. RESULTS: 3,573 patients were included in the study. Overall mortality rate was 25.7%. In-hospital mortality rate was 1.62% overall. 30-day, 1-year, 5-year, 10-year and 14.5-year mortality rates were 1.46%, 2.94%, 9.89%, 22.79% and 36.30% respectively. Factors associated with death after adjustment for other risk factors were older age, lower body mass index (BMI), hypertension, diabetes mellitus, chronic obstructive pulmonary disease, pre-operative renal failure on dialysis, higher last pre-operative creatinine level, lower estimated glomerular filtration rate (eGFR), heart failure, lower left ventricular ejection fraction and New York Heart Association class II, III and IV. Additionally, female gender and logistic EuroSCORE were associated with death on univariate Cox analysis, but not associated with death after adjustment with multivariate Cox analysis. Using CART analysis, the strongest predictor of mortality was pre-operative eGFR < 46.9, followed by logistic EuroSCORE ≥ 2.4. CONCLUSION: Poorer renal function, quantified by a lower eGFR, is the best predictor of post-CABG mortality. Amongst other risk factors, logistic EuroSCORE, age, diabetes and BMI had a relatively greater impact on mortality. Patients with chronic kidney disease stage 3B and above are at highest risk for mortality. We hope these findings heighten awareness to optimise current medical therapy in preserving renal function upon diagnosis of any atherosclerotic disease and risk factors contributing to coronary artery disease.


Subject(s)
Coronary Artery Bypass , Coronary Artery Disease , Humans , Coronary Artery Bypass/mortality , Male , Female , Risk Factors , Aged , Middle Aged , Retrospective Studies , Coronary Artery Disease/surgery , Coronary Artery Disease/mortality , Coronary Artery Disease/complications , Hospital Mortality , Time Factors
13.
Article in English | MEDLINE | ID: mdl-38988172

ABSTRACT

BACKGROUND: Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting. METHODS: H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 µg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 µmol/L MT for 2 hours, followed by exposure to 5 µg/mL LPS for 24 hours, and the MT group received only 150 µmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified. RESULTS: MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells. CONCLUSION: Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.

14.
Transl Androl Urol ; 13(6): 1014-1023, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983468

ABSTRACT

Background: Age-related kidney failure is often induced by a decrease in the bioavailability of tubular epithelial cells in elderly chronic kidney disease (CKD) patients. BRD4, an epigenetic regulator and a member of the bromodomain and extraterminal (BET) protein family, acts as a super-enhancer (SE) organizing and regulating genes expression during embryogenesis and cancer development. But the physiological function of BRD4 in normal cells has been less studied. This study aimed to research certain biological roles of BRD4 in the process of normal cell aging and discuss the potential mechanisms. Methods: In this study, we investigated the biological functions of BRD4 proteins in the aging of renal tubular cells. At first, we used a D-galactose (D-gal) and BRD4 inhibitor (Abbv-075) to replicate kidney senescence in vivo. D-gal and Abbv-075 were then used to measure the aging-related changes, such as changes in cell cycle, ß-galactosidase activity, cell migration, and p16 protein expression in vitro. At last, we knocked down and over-expressed BRD4 to investigate the aging-related physiological phenomena in renal tubular cells. Results: In vitro, D-gal treatment induced noticeable aging-related changes such as inducing cell apoptosis and cell cycle arrest, increasing ß-galactosidase activity as well as up-regulating p16 protein expression in primary human tubular epithelial cells. In the aging mice model, D-gal significantly induced renal function impairment and attenuated BRD4 protein expression. At the same time, the BRD4 inhibitor (Abbv-075) was able to mimic D-gal-induced cell senescence. In vivo, Abbv-075 also decreased kidney function and up-regulated p21 protein expression. When we knocked down the expression of BRD4, the senescence-associated ß-galactosidase (SA-ß-gal) activity increased dramatically, cell migration was inhibited, and the proportion of cells in the G0/G1 phase increased. Additionally, the knockdown also promoted the expression of the senescence-related proteins p16. When the renal tubular cells were overexpressed with BRD4, cell aging-related indicators were reversed in the D-gal-induced cell aging model. Conclusions: BRD4 appears to have an active role in the aging of renal tubular cells in vivo and in vitro. The findings also suggest that BRD4 inhibitors have potential nephrotoxic effects for oncology treatment. BRD4 may be a potential therapeutic biomarker and drug target for aging-related kidney diseases, which warrants additional studies.

15.
Vet J ; 306: 106186, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936461

ABSTRACT

African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods. Therefore, detecting antibodies against ASFV produced early in the infection can facilitate the prompt identification of infected pigs. This study focused on the p30 protein, an early expressed protein during ASFV infection, to develop an indirect ELISA. This method was established using the HEK293F suspension cell expression system, which has the ability to produce large quantities of correctly folded proteins with normal functionality. In this study, we developed an indirect ELISA test utilizing the p30 recombinant protein produced by the HEK293F suspension cell expression system as the antigen coating. The concentration of the p30 protein obtained from the HEK293F suspension cell expression system was measured at 4.668 mg/mL, serving as the foundation for establishing the indirect ELISA. Our findings indicate that the indirect ELISA method exhibits a sensitivity of 1:12800. Furthermore, it demonstrates high specificity and excellent reproducibility. Comparing our results to those obtained from the commercial kit, we found a coincidence rate of 98.148 % for the indirect ELISA. In summary, we have developed a sensitive method for detecting ASFV, providing a valuable tool for monitoring ASFV infection in pig herds.

16.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914677

ABSTRACT

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 µg/g body weight) in 100 µL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 µg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.

17.
Protein Cell ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916435

ABSTRACT

Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre- and early-symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early-onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with post-symptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over nine years. The most common adverse events (AEs) within two months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with post-symptomatic juvenile MLD.

18.
Parasite ; 31: 32, 2024.
Article in English | MEDLINE | ID: mdl-38912916

ABSTRACT

The plerocercoid larvae of Spirometra mansoni are etiological agents of human and animal sparganosis. Annexins are proteins with important roles in parasites. However, our knowledge of annexins in S. mansoni is still inadequate. In this study, 18 new members of the Annexin (ANX) family were characterized in S. mansoni. The clustering analysis demonstrated that all the SmANXs were divided into two main classes, consistent with the patterns of conserved motif organization. The 18 SmANXs were detected at all developmental stages (plerocercoid, adult, and egg) and displayed ubiquitous but highly variable expression patterns in all tissues/organs studied. The representative member rSmANX18 was successfully cloned and expressed. The protein was immunolocalized in the tegument and parenchyma of the plerocercoid and in the tegument, parenchyma, uterus and egg shell of adult worms. The recombinant protein can bind phospholipids with high affinity in a Ca2+-dependent manner, shows high anticoagulant activity and combines with FITC to recognize apoptotic cells. Annexin gene polymorphism and conservative core motif permutation were found in both cestodes and trematodes. SmANXs also revealed high genetic diversity among Platyhelminthes of medical interest. Our findings lay a foundation for further studies on the biological functions of ANXs in S. mansoni as well as other taxa in which ANXs occur.


Title: La famille des gènes des annexines chez Spirometra mansoni (Cestoda : Diphyllobothriidae) et son schéma phylogénétique parmi les Plathelminthes d'intérêt médical. Abstract: Les larves plérocercoïdes de Spirometra mansoni sont des agents étiologiques de la sparganose humaine et animale. Les annexines sont des protéines jouant un rôle important chez les parasites. Cependant, nos connaissances sur les annexines chez S. mansoni sont encore insuffisantes. Dans cette étude, 18 nouveaux membres de la famille des annexines (ANX) ont été caractérisés chez S. mansoni. L'analyse de regroupement a démontré que tous les SmANX étaient divisées en deux classes principales, ce qui correspond aux modèles d'organisation des motifs conservés. Les 18 SmANX ont été détectées à tous les stades de développement (plérocercoïde, adulte et œuf) et présentaient des modèles d'expression omniprésents mais très variables dans tous les tissus/organes étudiés. Le membre représentatif rSmANX18 a été cloné et exprimé avec succès. La protéine a été immunolocalisée dans le tégument et le parenchyme du plérocercoïde ainsi que dans le tégument, le parenchyme, l'utérus et la coquille d'œuf des vers adultes. La protéine recombinante peut se lier aux phospholipides avec une affinité élevée de manière dépendante du Ca2+, présente une activité anticoagulante élevée et se combine avec le FITC pour reconnaître les cellules apoptotiques. Un polymorphisme du gène de l'annexine et une permutation conservatrice du motif central ont été trouvés chez les cestodes et les trématodes. Les SmANX ont également révélé une grande diversité génétique parmi les Plathelminthes d'intérêt médical. Nos résultats jettent les bases pour des études plus approfondies sur les fonctions biologiques des ANX chez S. mansoni ainsi que dans d'autres taxons dans lesquels les ANX sont présents.


Subject(s)
Annexins , Phylogeny , Spirometra , Animals , Spirometra/genetics , Annexins/genetics , Annexins/chemistry , Amino Acid Sequence , Helminth Proteins/genetics , Helminth Proteins/chemistry , Multigene Family , Humans , Female , Genetic Variation , Recombinant Proteins/genetics
19.
Jpn J Radiol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922569

ABSTRACT

PURPOSE: Refractory hepatic encephalopathy (RHE) can occur as a consequence of excessive shunting following the creation of a transjugular intrahepatic portosystemic shunt (TIPS). We describe a technique that utilizes a suture-constrained covered stent for shunt reduction to treat TIPS-related RHE. MATERIALS AND METHODS: Between January 2017 and September 2023, 25 patients with TIPS-related RHE who underwent shunt reduction utilizing a suture-constrained covered stent were reviewed. The procedure involved reducing the diameter of a polytetrafluoroethylene-covered stent from 8 to 5 mm with a non-absorbable suture and inserting it into the existing TIPS stent to reduce shunt flow. RESULTS: Twelve of the 25 patients were evaluated. Shunt reduction was technically successful in all patients and no immediate complications related to the procedures were observed. Varying degrees of improvement in HE symptoms were observed after shunt reduction, with a mean increase in portosystemic gradient of 5 mmHg compared to pre-procedure, and complete disappearance of symptoms was observed in seven (58.3%) individuals. After a median follow-up of 8.3 months, HE recurred in 4 patients (33.3%) and TIPS indication recurred in 2 patients (16.7%) in the form of ascites and variceal bleeding, respectively. One patient (8.3%) developed shunt dysfunction detected by Doppler ultrasound and was accompanied by the presence of hepatic hydrothorax and ascites. At the end of the study, 5 patients (41.7%) were alive, 5 (41.7%) succumbed to liver failure, and 2 (16.7%) succumbed to pneumonia. CONCLUSIONS: Constraining the stent diameter with a suture is feasible, and using this suture-constrained covered stent for shunt reduction can effectively improve TIPS-related RHE. Further investigations are warranted to precisely delineate the impact of the increased portosystemic gradient and to optimize patient survival.

20.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857407

ABSTRACT

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

SELECTION OF CITATIONS
SEARCH DETAIL
...