Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 633
Filter
1.
ACS Biomater Sci Eng ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959418

ABSTRACT

The utilization of traditional therapies (TTS), such as chemotherapy, reactive oxygen species-based therapy, and thermotherapy, to induce immunogenic cell death (ICD) in tumor cells has emerged as a promising strategy for the activation of the antitumor immune response. However, the limited effectiveness of most TTS in inducing the ICD effect of tumors hinders their applications in combination with immunotherapy. To address this challenge, various intelligent strategies have been proposed to strengthen the immune activation effect of these TTS, and then achieve synergistic antitumor efficacy with immunotherapy. These strategies primarily focus on augmenting the tumor ICD effect or facilitating the antigen (released by the ICD tumor cells) presentation process during TTS, and they are systematically summarized in this review. Finally, the existing bottlenecks and prospects of TTS in the application of tumor immune regulation are also discussed.

2.
Pediatr Res ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014239

ABSTRACT

BACKGROUND: With the increase in the number of low birth weight infants, oxygen therapy is more widely used. However, chronic high-concentration oxygen environments lead to hyperoxic lung injury in children, which in turn leads to bronchopulmonary dysplasia (BPD). PGE1 is widely used in the clinic for its ability to inhibit inflammation and improve circulation. Therefore, we further investigated whether PGE-1 has a therapeutic effect on hyperoxic lung injury. METHODS: Hyperoxic lung injury model was adopted for investigating the interventional effects and underlying mechanisms of intraperitoneal injection of prostaglandin E1 (PGE-1) on hyperoxic lung injury in newborn rats via relevant experimental techniques, such as Diff-Quick staining, lung wet dry specific gravity measurements, HE staining, TUNEL staining, ELISA, and the Western blot method. RESULTS: Inflammatory and apoptotic cells in the PGE1-treated group were significantly lower than those in the hyperoxic lung injury group (p < 0.05); and the contents of IL-1ß, IL-6 and TNF-α in the treated group were significantly lower than those in the model group (p < 0.05). Caspase-3, CHOP, GRP78 and Bcl-2/Bax protein expression in the treatment group was significantly lower than that in the model group (p < 0.05). CONCLUSION: PGE-1 has a therapeutic effect on hyperoxic lung injury in neonatal rats. IMPACT: PGE1 treatment reduces levels of inflammatory cells and pro-inflammatory cytokines and decreases apoptosis. PGE1 has a therapeutic effect on BPD through the endoplasmic reticulum stress pathway. This study offers the possibility of PGE1 for the treatment of BPD.

3.
Environ Sci Pollut Res Int ; 31(32): 44691-44716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965108

ABSTRACT

Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.


Subject(s)
Cold Climate , Wetlands , Wastewater , Waste Disposal, Fluid/methods , Cold Temperature
4.
J Org Chem ; 89(14): 10047-10053, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38951997

ABSTRACT

We have successfully synthesized a series of bidentate ligands by utilizing 2-(trimethylsilyl)phenyl trifluorosulfonate as a precursor for the benzyl group. This method proceeded by inserting a polythiourea into the C═S π-bond, intramolecular ring proton migration, and ring opening. Salient features of this strategy are mild reaction conditions, a novel product structure, excellent stereochemistry, and a good functional group tolerance. Furthermore, a series of density functional theory calculations were performed to gain insights into the transfer mechanism.

5.
Huan Jing Ke Xue ; 45(6): 3297-3307, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897752

ABSTRACT

Land use changes lead to changes in the functions of different types of carbon sources and sinks, which are key sources of carbon emissions. The study of carbon emissions and its influencing factors in the Aksu River Basin from the perspective of land use change is of great importance for the promotion of integrated protection and restoration of mountains, water, forests, fields, lakes, grasslands, sand, and ice in the basin and to help achieve the goal of carbon peaking and carbon neutrality. Based on four periods of land use data and socio-economic data from 1990 to 2020, the total carbon emissions from land use were measured, and the spatial and temporal trajectories of carbon emissions and their influencing factors were explored. The results showed that:① from 1990 to 2020, arable land, forest land, construction land, and unused land showed a general increasing trend, whereas grasslands and water areas showed a decreasing trend. The spatial change in land use types was mainly characterized by the conversion of grasslands and unused land into arable land, and 83.58 % of the arable land conversion areas were concentrated in the southwest of Wensu, Aksu, and the northern part of Awat. ② The total net carbon emissions in the basin showed a continuous growth trend from 1990 to 2020, with a cumulative increase of 14.78×104 t. The increase in arable land was a key factor causing an increase in net carbon emissions in the basin. ③ The spatial distribution pattern of land use carbon emissions in the basin was high in the middle and low in the fourth, with significant changes in net carbon emissions mainly in the southern part of Wensu, Aksu, Awat, and Alaer. ④ Human activities had the strongest driving effect on land use carbon emissions, with their effects gradually increasing from east to west. The contribution of average annual temperature to land use carbon emissions was mainly concentrated in the eastern part of Aksu and the northern part of Awat, whereas average annual rainfall had a strong inhibitory effect on the northern part of Wensu and the western part of Aheqi.

6.
J Strength Cond Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917029

ABSTRACT

ABSTRACT: Ramirez, VJ, Bazrgari, B, Spencer, A, Gao, F, and Samaan, MA. Influence of repetitions-to-failure deadlift on lumbo-pelvic coordination, with and without body armor. J Strength Cond Res XX(X): 000-000, 2024-Repetition-to-failure (RTF) deadlift is a training modality for building lifting capacity that is often implemented by service members to maintain a minimum level of physical fitness. Despite its physiological benefits, little is known about the effects of RTF on the biomechanics of lumbar spine. Additionally, the effects of heavy deadlift training with body armor are unknown. The aim of this study was to investigate the effects of RTF deadlift on lumbo-pelvic coordination and posture, with and without body armor. Twenty-three healthy subjects, recreational powerlifters, were recruited for this study. Kinematics of the trunk and pelvis were measured using a 3D motion capture system while subjects conducted RTF deadlifts with a 68-kg low-handle hexagonal bar with and without a simulated body armor (22.68 kg). Lumbo-pelvic coordination was characterized using a vector coding approach and coupling angle variability (CAV) using circular statistics, over 3 equally divided segments of the lifting phase. More specifically, the coupling angle values were used to determine the coordination pattern between the thorax and pelvis. Trunk and pelvis ranges of motion and the amount of in-phase lumbo-pelvic coordination pattern increased with RTF deadlift. Additionally, CAV of the first and the third segments of deadlift cycle increased with RTF deadlift. Increase in variability of lumbo-pelvic coordination and peak trunk flexion (i.e., indication of increased mechanical demand of lifting on the spine), as a result of RTF deadlifting, can have deleterious soft tissue responses and contribute to an increase in risk of lower back injury.

7.
J Biophotonics ; : e202400032, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894573

ABSTRACT

Elastography is a noninvasive technique for characterizing the mechanical properties of biological tissues. Conventional methods have limitations in resolution and sensitivity, hindering disease detection in clinical diagnostics. To address these issues, this study developed an optical-resolution photoacoustic microelastography (OR-PAME) system. Using an agar tissue phantom with varying agar concentrations and contrast agents, PAME evaluated elasticity distribution under compression in both lateral and axial dimensions. It indirectly measured elastic properties by correlating photoacoustic responses, temporal lags, and induced displacement. We also applied the system to the study of the distribution of elastic characteristics of the liver tissue after ablation, which confirmed the potential of OR-PAME in the study of elastic characteristics. Quantitative analysis showed greater lateral displacement in regions with reduced agar concentrations, indicating decreased stiffness. PAME also detected vertical displacement along the axial plane, validating its efficacy in elastographic imaging. By improving resolution and penetration, PAME provides superior visualization of elasticity distribution. Its methodology correlates microstructural alterations with tissue biomechanics, holding potential implications in medical diagnostics.

8.
Intervirology ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38934174

ABSTRACT

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to three months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to three months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV DNA (ß=-0.43, 95% Confidence Interval [CI]: -0.76 to -0.12, p=0.009), HBeAg (ß=-195.15, 95% CI: -366.35 to -23.96, p=0.027), and hemoglobin changes (ß=-8.09, 95%CI: -15.54 to -0.64, p=0.035) and positively to changes in the levels of alanine aminotransferase (ß=73.9, 95%CI:38.92-108.95, p<0.001) and albumin (ß=2.73, 95% CI:0.23-5.23, p=0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intra-familial HBV infection have less hepatitis flares and liver damage, but their HBV DNA and HBeAg levels rebound faster after delivery, than those without intra-familial infection by the virus.

9.
Opt Lett ; 49(10): 2693-2696, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748138

ABSTRACT

In this Letter, a transfer learning method is proposed to complete design tasks on heterogeneous metasurface datasets with distinct functionalities. Through fine-tuning the inverse design network and freezing the parameters of hidden layers, we successfully transfer the metasurface inverse design knowledge from the electromagnetic-induced transparency (EIT) domain to the three target domains of EIT (different design), absorption, and phase-controlled metasurface. Remarkably, in comparison to the source domain dataset, a minimum of only 700 target domain samples is required to complete the training process. This work presents a significant solution to lower the data threshold for the inverse design process and provides the possibility of knowledge transfer between different domain metasurface datasets.

10.
Adv Mater ; : e2404199, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734974

ABSTRACT

External stimuli triggering chemical reactions in cancer cells to generate highly reactive chemical species are very appealing for cancer therapy, in which external irradiation activating sensitizers to transfer energy or electrons to surrounding oxygen or other molecules is critical for generating cytotoxic reactive species. However, poor light penetration into tissue, low activity of sensitizers, and reliance on oxygen supply restrict the generation of cytotoxic chemical species in hypoxic tumors, which lowers the therapeutic efficacy. Here, this work presents galvanic cell nanomaterials that can directly release highly reactive electrons in tumors without external irradiation or photosensitizers. The released reactive electrons directly react with surrounding biomolecules such as proteins and DNA within tumors to destroy them or react with other surrounding (bio)molecules to yield cytotoxic chemical species to eliminate tumors independent of oxygen. Administering these nanogalvanic cells to mice results in almost complete remission of subcutaneous solid tumors and deep metastatic tumors. The results demonstrate that this strategy can further arouse an immune response even in a hypoxic environment. This method offers a promising approach to effectively eliminate tumors, similar to photodynamic therapy, but does not require oxygen or irradiation to activate photosensitizers.

11.
J Org Chem ; 89(11): 7741-7746, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38741558

ABSTRACT

A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.

12.
Acta Biomater ; 181: 176-187, 2024 06.
Article in English | MEDLINE | ID: mdl-38719158

ABSTRACT

Bacterial infections are among the most critical global health challenges that seriously threaten the security of human. To address this issue, a biocompatible engineered living hydrogel patch was developed by co-embedding engineered photothermal bacteria (EM), photosensitizer (porphyrin) and reactive oxygen species amplifier (laccase) in a protein hydrogel. Remarkably, the genetice engineered bacteria can express melanin granules in vivo and this allows them to exhibit photothermal response upon being exposed to NIR-II laser (1064 nm) irradiation. Besides, electrostatically adhered tetramethylpyridinium porphyrin (TMPyP) on the bacterial surface and encapsulated laccase (Lac) in protein gel can generate highly toxic singlet oxygen (1O2) and hydroxyl radical (·OH) in the presence of visible light and lignin, respectively. Interestingly, the engineered bacteria hydrogel patch (EMTL@Gel) was successfully applied in synergistic photothermal, photodynamic and chemodynamic therapy, in which it was able to efficiently treat bacterial infection in mouse wounds and enhance wound healing. This work demonstrates the concept of "fighting bacteria with bacteria" combining bacterial engineering and material engineering into an engineered living hydrogel path that can synergistically boost the therapeutic outcome. STATEMENT OF SIGNIFICANCE: Genetically engineered bacteria produce melanin granules in vivo, exhibiting remarkable photothermal properties. These bacteria, along with a photosensitizer (TMPyP) and a reactive oxygen species amplifier (laccase), are incorporated into a biocompatible protein hydrogel patch. Under visible light, the patch generates toxic singlet oxygen (1O2) and hydroxyl radical (·OH), demonstrates outstanding synergistic effects in photothermal, photodynamic, and chemodynamic therapy, effectively treating bacterial infections and promoting wound healing in mice.


Subject(s)
Hydrogels , Wound Healing , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Bacterial Infections/drug therapy , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Laccase/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Escherichia coli/drug effects
13.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Article in English | MEDLINE | ID: mdl-38725843

ABSTRACT

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , MTOR Inhibitors , Proto-Oncogene Protein c-ets-1 , Tacrolimus Binding Protein 1A , Animals , Humans , Mice , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , Mice, Nude , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology , Sirolimus/therapeutic use , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Clinics (Sao Paulo) ; 79: 100372, 2024.
Article in English | MEDLINE | ID: mdl-38733688

ABSTRACT

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.


Subject(s)
Epilepsy , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Ferroptosis/physiology , Ferroptosis/drug effects , Neurons/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Male , Hippocampus/metabolism , Apoptosis/physiology , Rats , Disease Progression , Disease Models, Animal
15.
Adv Sci (Weinh) ; 11(26): e2401207, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704676

ABSTRACT

Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO4 nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped Fe2xNi2(1-x)P nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO4 nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm-2 and 76.2 (64.7) mV dec-1 for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm-2 for overall water splitting and can steadily operate for 200 h at 100 mA cm-2. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.

16.
Chemosphere ; 358: 142095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663681

ABSTRACT

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Exposure , Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Housing , Dust/analysis , Humans , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Beijing , Flame Retardants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Halogenated Diphenyl Ethers/analysis , Child , Adult , Child, Preschool , Air Pollutants/analysis , Organophosphates/analysis , Infant , China , Adolescent
17.
Viruses ; 16(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38675896

ABSTRACT

Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/virology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , COVID-19 Vaccines/immunology , China , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
18.
Food Chem ; 450: 139353, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636376

ABSTRACT

Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.


Subject(s)
Brain , Dietary Fats , Electroencephalography , Taste Perception , Humans , Female , Young Adult , Adult , Male , Brain/physiology , Dietary Fats/metabolism , Dietary Fats/analysis , Taste , Fatty Acids/chemistry , Fatty Acids/metabolism
19.
Food Chem ; 450: 139336, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640540

ABSTRACT

The lipase (LA) and peroxidase (POD) activities, as well as morphological structure, physicochemical and digestion properties of sand rice flour (SRF) treated with superheated steam (SS), were investigated. SS treatment at 165 °C completely deactivated LA and resulted in a 98% deactivation of POD activities in SRF. This treatment also intensified gelatinization, induced noticeable color alterations, and decreased pasting viscosities. Furthermore, there was a moderate reduction in crystal structure, lamellar structure, and short-range ordered structure, with a pronounced reduction at temperatures exceeding 170 °C. These alterations significantly impacted SRF digestibility, leading to increased levels of rapidly digestible starch (RDS) and resistant starch (RS), with the highest RS content achieved at 165 °C. The effectiveness of SS treatment depends on temperature, with 165 °C being able to stabilize SRF with moderate changes in color and structure. These findings will provide a scientific foundation for SS applicated in SRF stabilization and modification.


Subject(s)
Digestion , Flour , Hot Temperature , Oryza , Steam , Oryza/chemistry , Oryza/metabolism , Flour/analysis , Lipase/chemistry , Lipase/metabolism , Peroxidase/chemistry , Peroxidase/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Enzyme Stability , Starch/chemistry , Starch/metabolism , Food Handling
20.
Ecol Evol ; 14(4): e11307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665893

ABSTRACT

Global warming has raised concerns regarding the potential impact on aquatic biosafety and health. To illuminate the adaptive mechanisms of bdelloid rotifers in response to global warming, the ecological and transcriptomic characteristics of two strains (HX and ZJ) of Rotaria rotatoria were investigated at 25°C and 35°C. Our results showed an obvious genetic divergence between the two geographic populations. Thermal stress significantly reduced the average lifespan of R. rotatoria in both strains, but increased the offspring production in the ZJ strain. Furthermore, the expression levels of genes Hsp70 were significantly upregulated in the HX strain, while GSTo1 and Cu/Zn-SOD were on the contrary. In the ZJ strain, the expression levels of genes Hsp70, CAT2, and GSTo1 were upregulated under thermal stress. Conversely, a significant decrease in the expression level of the Mn-SOD gene was observed in the ZJ strain under thermal stress. Transcriptomic profiling analysis revealed a total of 105 and 5288 differentially expressed genes (DEGs) in the HX and ZJ strains under thermal stress, respectively. The PCA results showed clear differences in gene expression pattern between HX and ZJ strains under thermal stress. Interestingly, compared to the HX strain, numerous downregulated DEGs in the ZJ strain were enriched into pathways related to metabolism under thermal stress, suggesting that rotifers from the ZJ strain prioritize resource allocation to reproduction by suppressing costly metabolic processes. This finding is consistent with the life table results. This study provides new insights into the adaptive evolution of aquatic animals in the context of global climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...