Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Int J Med Sci ; 18(16): 3718-3727, 2021.
Article in English | MEDLINE | ID: mdl-34790045

ABSTRACT

The objective for the present analyses was to evaluate the utility of physiologically-based pharmacokinetic (PBPK) modeling for prediction of the pharmacokinetics (PK) in Chinese and Japanese populations with a panel of Pfizer internal compounds. Twelve compounds from Pfizer internal development pipeline with available Westerner PK data and available PK data in at least one of the subpopulations of Japanese and Chinese populations were identified and included in the current analysis. These selected compounds represent various elimination pathways across different therapeutic areas. The Simcyp® PBPK simulator was used to develop and verify the PBPK models of individual compounds. The developed models for these compounds were verified by using the clinical PK data in Westerners. The verified PBPK models were further used to predict the PK of these compounds in Chinese and Japanese populations and the predicted PK parameters were compared with the observed PK parameters. Ten of the 12 compounds had PK data in Chinese, and all the 12 compounds had PK data in Japanese. In general, the PBPK models performed well in predicting PK in Chinese and Japanese, with 8 of 10 drugs in Chinese and 7 of 12 drugs in Japanese has AAFE values less than 1.25-fold. PBPK-guided predictions of the relative PK difference were successful for 75% and 50%, respectively, between Chinese and Western and between Japanese and Western of the tested drugs using 0.8-1.25 as criteria. In conclusion, well verified PBPK models developed using data from Westerners can be used to predict the PK in Chinese and Japanese populations.


Subject(s)
Asian People/ethnology , Metabolic Clearance Rate , Models, Biological , Pharmacokinetics , Asian People/statistics & numerical data , China/ethnology , Computer Simulation , Humans , Japan/ethnology , Predictive Value of Tests , Prognosis
2.
RSC Adv ; 8(16): 8469-8483, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539855

ABSTRACT

The promising benefits of salidroside (SAL) in alleviating high altitude sickness boost investigations on its pharmacokinetics and biological activity. However, the transportation and disposition process of SAL under hypoxic conditions has never been explored. The current study was proposed to investigate the pharmacokinetics of SAL in hypoxic rats and to explore the underlying mechanisms for the distinct metabolic fate of SAL under hypoxia. Pharmacokinetic studies on SAL was conducted in both hypoxic and normoxic rats. The transport properties of SAL were investigated on both hypoxic and normoxic Caco-2 monolayer models. Enzymes involved in SAL metabolism were identified and the effects of hypoxia on these enzymes were assessed by real-time PCR, western blotting analyses, and rat liver homogenate incubation. The renal clearance (CLr) of SAL, effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) in both hypoxic and normoxic rats were also determined for renal function assessment. It was found that the systemic exposure of SAL in hypoxic rats was remarkably higher than that in normoxic rats. The barrier function of Caco-2 monolayer was weakened under hypoxia due to the impaired brush border microvilli and decreased expression of tight junction protein. Hepatic metabolism of SAL in hypoxic rats was attenuated due to the reduced activity of cytosolic ß-glucosidase (CBG). Moreover, CLr of SAL was reduced in hypoxic rats due to the suppressed ERPF. Our findings suggest the potential need for dose-adjustment of SAL or its structural analogs under hypoxic conditions.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-666541

ABSTRACT

OBJECTIVE To investigate the effect of hypoxia on the pharmacokinetic process of salidrosidein rats and to explore its underlying mechanisms. METHODS The Caco-2 cell monolayerwas exposed to 1% oxygen (O2) concentration for 24 h to build the hypoxiccell model. The transportation mode of salidroside was investigated with the aid of this hypoxia model by detecting the apparent permeability coefficient(Papp). Healthy Sprague Dawley (SD) rats were exposed to 9% O2 for 72 h for the construction of hypoxic rat model. Liver sample was subsequently collected from the hypoxic rats with an aim to identify enzymes responsible for salidroside metabolism. The expression levels of sali?droside-transporting and salidroside-metabolizing enzymes, including Sodium-dependent glucose cotrans?porters (SGLT1), β-glucosidase (GBA3)and sulfotransferase (SULT2A1), were thereafter detected by RT-PCR and Western blot. The metabolic activity of GBA3 and SULT2A1 was monitored by rat liver microsome incubation.In addition, the renal function of rats under hypoxia was assessed by detecting concentrations of blood urea nitrogen and creatinine. RESULTS The AUC and t1/2 values of salidroside in hypoxic rats were more than doubled, while the in vivo clearance was significantly reduced. Mechanistic study demonstrated that the PappA- B/PappB- A eualsto 10.3, indicating the potential active transport of salidrosile. The expression of SGLT1 and GBA3 was significantly decreased, which indicated a reduced metabolism of salidroside under hypoxia. Moreover, rat under hypoxia was found to suffer from renal dysfunction, with an abnormal value of blood urea nitrogen. CONCLUSION Due to the reduced metabolism and the abnormal renal function under hypoxia, the systemic exposure of salidroside in rats was signifi?cantly enhanced.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-666494

ABSTRACT

OBJECTIVE To map a comprehensive metabolic pathway of herbacetin in rats, specifically, to elucidate the biotransformation of herbacetin in vivo and to simultaneously monitor the pharmacokinetic process of both parent drug and its major metabolites. METHODS liquid chromatography/ion trap mass spectrometry (LC/MSn) and ultra-liquid chromatography coupled with mass spectrometry (UPLC/MS) were combined in the current study for qualitative and quantitative determinations of herbacetin and its metabolites in bile, urine and feces after both oral and intravenous administration of herbacetin to rats. Enzyme kinetic studies on the intestinal and hepatic metabolism of herbacetin were further conducted to elucidate metabolic profiles of herbacetin in rat tissues and organs. Additionally, plasma concentration profiles of herbacetin and its metabolites in rats were obtained to characterize the overall pharmacokinetic behavior of herbacetin. RESULTS It was found that herbacetin was excreted primarily from rat urine in the form of glucuronide-conjugations. Subsequent in vitro enzyme kinetic studies and in vivo pharmacokinetic investigations suggested an extensive hepatic metabolism of herbacetin and the high exposure of herbacetin- glucuronides in systemic circulation. The clearance, half- life and bioavailability of herbacetin in rats were determined as (16.4±1.92)mL·kg-1·min-1, (11.9±2.7)min, and 1.32%, respectively. On basis of these findings, a comprehensive metabolic pathway of herbacetin in rats was composed. In addition, a physiology based pharmacokinetic (PBPK) model was successfully developed with the aid of the GastroPlus to simulate the pharmacokinetic process of herbacetin in rats. Application of the PBPK modeling can provide a useful starting point to understand and extrapolate pharmacokinetic parameters among different species, populations, and disease states. CONCLUSION After oral administration, herbacetin was subjected to colonic degradation and extensive first pass metabolism, with glucuronidation as its dominating in vivo metabolic pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...