Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 11: 1154139, 2023.
Article in English | MEDLINE | ID: mdl-37020646

ABSTRACT

Background: Urinary tract infections (UTI) are common types of bacterial infection in children. UTI treatment is aimed to prevent complications including hypertension, proteinuria, and progression to chronic kidney disease. Activated neutrophils release chromatin-based structures associated with antimicrobial proteins called neutrophil extracellular traps (NETs). We aimed to describe the role of NET-associated markers in children with UTI as well as the role of NETs formation in a mouse model of UTI. Materials and methods: Markers of NETs including extracellular DNA (ecDNA), myeloperoxidase (MPO) and cathelicidin were analyzed in children with febrile UTI caused by E. coli (n = 98, aged 0.3-1.3 years) and in healthy controls (n = 50, 0.5-5.2 years). Moreover, an acute experimental model of UTI was performed on PAD4 knock-out mice with diminished NETs formation (n = 18), and on wild-type mice (n = 15). Results: Children with UTI had significantly higher urinary NETs markers including total ecDNA, nuclear DNA and mitochondrial DNA, altogether with MPO and cathelicidin. The concentrations of MPO and cathelicidin positively correlated with ecDNA (r = 0.53, p ≤ 0.001; r = 0.56, p ≤ 0.001, respectively) and the number of leukocytes in the urine (r = 0.29, p ≤ 0.05; r = 0.27, p ≤ 0.05, respectively). Moreover, urinary MPO was positively associated with cathelicidin (r = 0.61, p ≤ 0.001). In the experimental model, bacterial load in the bladder (20-fold) and kidneys (300-fold) was significantly higher in PAD4 knock-out mice than in wild-type mice. Conclusion: Higher urinary NETs makers-ecDNA, MPO and cathelicidin and their correlation with leukocyturia in children with UTI confirmed our hypothesis about the association between NETs and UTI in children. Higher bacterial load in mice with diminished NETs formation suggests that NETs are not only a simple consequence of UTI, but might play a direct role in the prevention of pyelonephritis and other UTI complications.

2.
Sci Rep ; 12(1): 16812, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207374

ABSTRACT

Extracellular DNA (ecDNA) in plasma is a non-specific biomarker of tissue damage. Urinary ecDNA, especially of mitochondrial origin, is a potential non-invasive biomarker of kidney damage. Despite prominent tissue damage, ecDNA has not yet been comprehensively analysed in acute kidney injury (AKI). We analysed different fractions of ecDNA, i.e. total, nuclear and mitochondrial, in plasma and urine of children, and different animal models of AKI. We also analysed the activity of the deoxyribonuclease (DNase), which is contributes to the degradation of ecDNA. Patients with AKI had higher total and nuclear ecDNA in both, plasma and urine (sixfold and 12-fold in plasma, and 800-fold in urine, respectively), with no difference in mitochondrial ecDNA. This was mainly found for patients with AKI due to tubulointerstitial nephritis and atypical haemolytic uremic syndrome. Increased plasma ecDNA was also found in animal models of AKI, including adenine nephropathy (fivefold), haemolytic uremic syndrome (fourfold), and ischemia-reperfusion injury (1.5-fold). Total urinary ecDNA was higher in adenine nephropathy and ischemia-reperfusion injury (1300-fold and twofold, respectively). DNase activity in urine was significantly lower in all animal models of AKI in comparison to controls. In conclusion, plasma total and nuclear ecDNA and urinary total ecDNA is increased in patients and animals with particular entities of AKI, suggesting a mechanism-dependent release of ecDNA during AKI. Further studies should focus on the dynamics of ecDNA and its potential role in the pathogenesis of AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/pathology , Adenine/metabolism , Animals , Biomarkers , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Deoxyribonucleases/metabolism , Kidney/metabolism , Reperfusion Injury/pathology
3.
Eur J Pediatr ; 181(1): 311-321, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34292351

ABSTRACT

Oxidative stress appears to be involved in the pathogenesis of osteoporosis-a serious complication of anorexia nervosa (AN). We evaluated the oxidative status in adolescent girls with AN and its potential relationship with bone mineral density (BMD). Girls with AN (n = 43) and age-matched healthy controls (n = 20) underwent anthropometric and BMD examination. Markers of bone turnover, oxidative stress, and antioxidant status were measured. Participants with AN and controls did not differ in BMD at the lumbar spine (p = 0.17) and total body less head BMD (p = 0.08). BMD at the total hip was lower (p < 0.001) in the AN group compared with the controls. Levels of antioxidant status markers-ferric reduction antioxidant power, total antioxidant capacity, and reduced and oxidized glutathione ratio (all p < 0.001)-were significantly lower, whereas those of advanced oxidation protein products (AOPP), fructosamines, and advanced glycation end products (AGEs) (all p < 0.001) were higher in AN patients than in healthy controls. BMD and bone turnover markers were positively correlated with antioxidant status markers, while they were negatively correlated with AOPP, fructosamines, and AGEs levels.  Conclusion: This is the first study to assess a potential association between oxidative status and BMD in adolescents with AN. We demonstrated that in young girls, the imbalance of oxidative status and reduced BMD are concurrently manifested at the time of the diagnosis of AN. Disturbance of oxidative status could play a pathogenetic role in AN-associated decreased BMD. What is Known: • Osteoporosis is a serious complication of AN, and in affected adolescents may result in a permanent deficit in bone mass. • Oxidative and carbonyl stress may be involved in the development of bone loss. What is New: • Adolescents girls with AN have impaired antioxidant defense and increased oxidative damage to biomolecules. • Disturbance of oxidative status could affect bone loss and could contribute to decreased BMD in adolescent females with AN.


Subject(s)
Anorexia Nervosa , Osteoporosis , Absorptiometry, Photon , Adolescent , Anorexia Nervosa/complications , Bone Density , Female , Humans , Lumbar Vertebrae/metabolism , Oxidative Stress
4.
Eur J Oral Sci ; 127(5): 417-424, 2019 10.
Article in English | MEDLINE | ID: mdl-31247131

ABSTRACT

Despite the fact that saliva contains measurable concentrations of urea and creatinine, it is not widely used in clinical nephrology. One of the reasons is the high inter- and intra-individual variability in the salivary markers of kidney function. We hypothesized that gingival bleeding in patients with periodontitis could contribute to this variability by increasing the concentration of salivary urea or creatinine. Samples were collected from 25 patients with periodontitis and 29 healthy controls. In addition, saliva samples from five healthy volunteers were artificially contaminated with blood. The concentration of urea, but not that of creatinine, was more than twice as high in patients with periodontitis than in controls. Artificial contamination of saliva with blood did not affect the salivary concentration of creatinine. Salivary urea increased only with very high levels of contamination (≥2.5% blood in saliva), but that did not occur in patients. In conclusion, periodontitis increases the concentration of salivary urea, but this is not likely to be a result of contamination with blood. Future studies should investigate the composition of the oral microbiome, specifically regarding how it affects the concentration of salivary urea. Salivary creatinine seems to be a more robust non-invasive marker of renal functions than salivary urea.


Subject(s)
Creatinine/analysis , Periodontitis/diagnosis , Saliva/chemistry , Urea/analysis , Biomarkers/analysis , Humans
5.
Front Med (Lausanne) ; 6: 311, 2019.
Article in English | MEDLINE | ID: mdl-31998731

ABSTRACT

Decreased renal function due to chronic kidney disease (CKD) is associated with anxiety and cognitive decline. Although these mental disorders are often obvious in late stage renal disease patients, they might be unnoticeable or are neglected in early stages of the CKD development. Associations between renal and cognitive dysfunction have been indicated by studies performed mainly in patients undergoing dialysis, which itself represents a stress and decreased quality of life. However, experimental and causal studies are scarce. Our aim was to investigate dynamic changes in behavioral traits during the progression of CKD in an animal model. Thirty 12-week old male rats were used in this experiment. CKD was induced by a subtotal (5/6) nephrectomy. Two, 4, and 6 months after surgical induction of CKD, the open field, the light-dark box and the novel object recognition tests were conducted to assess the locomotor activity, anxiety-like behavior and the memory function of rats. Blood urea nitrogen (BUN), plasma concentration of creatinine (CREAT), albumin to creatinine ratio in urine (ACR) along with the renal histology were assessed to monitor the development and severity of CKD. In comparison to control rats, 5/6 nephrectomized rats had by 46-66% higher concentration of BUN during the whole follow-up period, as well as by 52% and by 167% higher CREAT and ACR, respectively, 6 months after surgery. Although the effect of time was observed in some behavioral parameters, nephrectomy did not significantly influence either locomotor activity, or anxiety-like behavior, or memory function of animals. Two and 4 months after surgery, animals moved shorter distance and spent less time in the center zone. However, the open-field ambulation returned back to the baseline level 6 months after CKD induction. Although nephrectomized rats displayed impaired kidney function as early as 2 months after surgery, no significant differences were found between the CKD and the control rats in any of the observed behaviors. Further studies are needed in order to evaluate whether behavioral abnormalities are related to severity of CKD or might be attributed to psychosocial aspect of end-stage renal disease and decreased quality of life in dialysis patients.

6.
Shock ; 52(2): 257-263, 2019 08.
Article in English | MEDLINE | ID: mdl-30052582

ABSTRACT

Concentration of extracellular DNA (ecDNA) in plasma of septic patients is higher in comparison to healthy controls and is associated with worse prognosis in intensive care patients. Decrease of ecDNA in plasma by treatment with deoxyribonuclease (DNase) showed to have beneficial effects in animal models of sepsis. A previously published study showed that timing of DNase application is crucial for the effect of DNase. No published study monitored plasma ecDNA dynamics during sepsis in detail yet. The aim of our study was to describe the early dynamics of plasma ecDNA but also plasma DNase activity in a mouse model of sepsis. Sepsis was induced using intraperitoneal injection of E. coli and mice were euthanized every hour to obtain sufficient volume of plasma. Our results show that the concentration of plasma ecDNA is rising continuously during the first 5 h after infection and is 20-fold higher 5 h after induction of sepsis in comparison to control mice. Subcellular origin of plasma ecDNA was analyzed but fundamental differences in dynamics between nuclear and mitochondrial ecDNA were not found. DNase activity in plasma seems to rise slowly until the fourth hour, but the interindividual variability is high. In conclusion, this is the first study that describes the dynamics of plasma ecDNA and DNase activity in early sepsis in detail. Our study is the basis for further studies focused on the timing of exogenous DNase treatment in sepsis. Additional studies will be needed to monitor plasma ecDNA in later time points that are more clinically relevant.


Subject(s)
DNA/blood , Plasma/metabolism , Sepsis/blood , Sepsis/microbiology , Animals , DNA, Mitochondrial/metabolism , Deoxyribonucleases/metabolism , Disease Models, Animal , Escherichia coli/pathogenicity , Female , Injections, Intraperitoneal , Male , Mice , Random Allocation , Sepsis/genetics , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...