Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 6868, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720622

ABSTRACT

To compare in patients with untreated rectal cancer quantitative perfusion parameters calculated from 3rd-generation dual-source dynamic volume perfusion CT (dVPCT) with 3-Tesla-MR-perfusion with regard to data variability and tumour differentiation. In MR-perfusion, plasma flow (PF), plasma volume (PV) and mean transit time (MTT) were assessed in two measurements (M1 and M2) by the same reader. In dVPCT, blood flow (BF), blood volume (BV), MTT and permeability (PERM) were assessed respectively. CT dose values were calculated. 20 patients (60 ± 13 years) were analysed. Intra-individual and intra-reader variability of duplicate MR-perfusion measurements was higher compared to duplicate dVPCT measurements. dVPCT-derived BF, BV and PERM could differentiate between tumour and normal rectal wall (significance level for M1 and M2, respectively, regarding BF: p < 0.0001*/0.0001*; BV: p < 0.0001*/0.0001*; MTT: p = 0.93/0.39; PERM: p < 0.0001*/0.0001*), with MR-perfusion this was true for PF and PV (p-values M1/M2 for PF: p = 0.04*/0.01*; PV: p = 0.002*/0.003*; MTT: p = 0.70/0.27*). Mean effective dose of CT-staging incl. dVPCT was 29 ± 6 mSv (20 ± 5 mSv for dVPCT alone). In conclusion, dVPCT has a lower data variability than MR-perfusion while both dVPCT and MR-perfusion could differentiate tumour tissue from normal rectal wall. With 3rd-generation dual-source CT dVPCT could be included in a standard CT-staging without exceeding national dose reference values.


Subject(s)
Computed Tomography Angiography/standards , Magnetic Resonance Angiography/standards , Rectal Neoplasms/diagnostic imaging , Aged , Computed Tomography Angiography/methods , Female , Humans , Magnetic Resonance Angiography/methods , Male , Middle Aged , Reproducibility of Results
2.
Sci Rep ; 7(1): 12036, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931946

ABSTRACT

In this work, the two compartment exchange model and two compartment uptake model were applied to obtain quantitative perfusion parameters in rectum carcinoma and the results were compared to those obtained by the deconvolution algorithm. Eighteen patients with newly diagnosed rectal carcinoma underwent 3 T MRI of the pelvis including a T1 weighted dynamic contrastenhanced (DCE) protocol before treatment. Mean values for Plasma Flow (PF), Plasma Volume (PV) and Mean Transit Time (MTT) were obtained for all three approaches and visualized in parameter cards. For the two compartment models, Akaike Information Criterion (AIC) and [Formula: see text] were calculated. Perfusion parameters determined with the compartment models show results in accordance with previous studies focusing on rectal cancer DCE-CT (PF2CX = 68 ± 44 ml/100 ml/min, PF2CU = 55 ± 36 ml/100 ml/min) with similar fit quality (AIC:169 ± 81/179 ± 77, [Formula: see text]:10 ± 12/9 ± 10). Values for PF are overestimated whereas PV and MTT are underestimated compared to results of the deconvolution algorithm. Significant differences were found among all models for perfusion parameters as well as between the AIC and [Formula: see text] values. Quantitative perfusion parameters are dependent on the chosen tracer kinetic model. According to the obtained parameters, all approaches seem capable of providing quantitative perfusion values in DCE-MRI of rectal cancer.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Rectal Neoplasms/diagnostic imaging , Aged , Contrast Media , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Perfusion , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...