Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(32): 79136-79148, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286830

ABSTRACT

This work experimentally investigates the performance of solar still with induced turbulence (SWIT) which operates with a novel approach for improved productivity. A metal wire net has been submerged in basin water of still and direct current vibration micro motor has been used to develop small intensity vibrations in wire net. These vibrations serve to induce turbulence in basin water and also break the thermal boundary layer between still surface and water to enhance the evaporation. The energy-exergy-economic-environment analysis of SWIT has been performed and compared with conventional solar still (CS) of identical size. The overall heat transfer coefficient of SWIT is found to be 66% more in comparison of CS. The SWIT provided 53% increase in yield and it is 55% more thermally efficient than CS. The average exergy efficiency of the SWIT is found to be 76% higher than that of CS. The cost of water from SWIT is 0.028 $ with a payback period of 0.74 years and the carbon credit gained by SWIT is found to be 105 $. The productivity of SWIT has also been compared for intervals of 5, 10, and 15 min between the induced turbulence to find suitable interval duration.


Subject(s)
Carbon , Solar Energy , Electricity , Hot Temperature , Vibration , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...