Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Cancer ; 9(1): 28-41, 2023 01.
Article in English | MEDLINE | ID: mdl-36208990

ABSTRACT

Cellular senescence forms a barrier to tumorigenesis, by inducing cell cycle arrest in damaged and mutated cells. However, once formed, senescent cells often emit paracrine signals that can either promote or suppress tumorigenesis. There is evidence that, in addition to cancer cells, subsets of tumor stromal cells, including fibroblasts, endothelial cells, and immune cells, undergo senescence. Such senescent stromal cells can influence cancer development and progression and represent potential targets for therapy. However, understanding of their characteristics and roles is limited and few studies have dissected their functions in vivo. Here, we discuss current knowledge and pertinent questions regarding the presence of senescent stromal cells in cancers, the triggers that elicit their formation, and their potential roles within the tumor microenvironment.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Endothelial Cells , Neoplasms/pathology , Stromal Cells/pathology , Carcinogenesis/pathology
2.
Cell Rep ; 24(12): 3237-3250, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30232005

ABSTRACT

Differentiation events contribute to phenotypic cellular heterogeneity within tumors and influence disease progression and response to therapy. Here, we dissect mechanisms controlling intratumoral heterogeneity within triple-negative basal-like breast cancers. Tumor cells expressing the cytokeratin K14 possess a differentiation state that is associated with that of normal luminal progenitors, and K14-negative cells are in a state closer to that of mature luminal cells. We show that cells can transition between these states through asymmetric divisions, which produce one K14+ and one K14- daughter cell, and that these asymmetric divisions contribute to the generation of cellular heterogeneity. We identified several regulators that control the proportion of K14+ cells in the population. EZH2 and Notch increase the numbers of K14+ cells and their rates of symmetric divisions, and FOXA1 has an opposing effect. Our findings demonstrate that asymmetric divisions generate differentiation transitions and heterogeneity, and identify pathways that control breast cancer cellular composition.


Subject(s)
Asymmetric Cell Division , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cells, Cultured , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Keratins/genetics , Keratins/metabolism , Mice , Receptors, Notch/genetics , Receptors, Notch/metabolism , Triple Negative Breast Neoplasms/metabolism
3.
Nat Med ; 22(4): 412-20, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950362

ABSTRACT

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Aging/pathology , Animals , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Glucose/metabolism , Humans , Insulin/genetics , Insulin Secretion , Insulin-Secreting Cells/pathology , Mice , Mice, Transgenic , PPAR gamma/genetics , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...