Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(2): 622-632, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38273445

ABSTRACT

Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.


Subject(s)
Doxorubicin/analogs & derivatives , Liposomes , Neoplasms , Mice , Humans , Animals , Drug Compounding , COVID-19 Vaccines , Immunoglobulin M , Polyethylene Glycols
2.
J Pharm Sci ; 113(3): 555-578, 2024 03.
Article in English | MEDLINE | ID: mdl-37931786

ABSTRACT

Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.


Subject(s)
Antibodies , Proteins , Humans , Prevalence , Proteins/chemistry , Polyethylene Glycols/chemistry , Polymers , Liposomes/chemistry , Immunoglobulin M
3.
Drug Deliv Transl Res ; 11(3): 866-893, 2021 06.
Article in English | MEDLINE | ID: mdl-32901367

ABSTRACT

Corticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences. Different routes and regimens are available for ocular administration of corticosteroids. Conventional topical application to the eye is the route of choice when targeting diseases affecting the ocular surface and anterior segment, while periocular, intravitreal, and suprachoroidal injections can be potentially effective for posterior segment diseases. Corticosteroid-induced intraocular pressure elevation and cataract formation remain the most significant local risks following topical as well as systemic corticosteroid administration. Invasive drug administration via intracameral, subconjunctival, and intravitreal injection can enhance ocular bioavailability and minimize dose and dosing frequency of administration, yet may exacerbate ocular side effects of corticosteroids. This review provides a critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular corticosteroid therapy.


Subject(s)
Eye Diseases , Ophthalmology , Administration, Ophthalmic , Adrenal Cortex Hormones/adverse effects , Drug Delivery Systems , Eye Diseases/chemically induced , Eye Diseases/drug therapy , Glucocorticoids , Humans , Triamcinolone Acetonide
4.
Pharm Res ; 37(10): 198, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32968868

ABSTRACT

PURPOSE: Topical corticosteroids administration is commonly used for management of various ocular conditions especially those affecting the anterior segment of the eye. Poor solubility and limited pre-corneal residence time result in insufficient drug penetration to the outer (cornea and conjunctival-scleral) coats of the eye. This study aimed to prepare and evaluate cubosomes for prolonging residence time and enhancing ocular bioavailability of BDP. METHODS: GMO-cubosomes were prepared using the top-down technique. Two stabilizers were investigated: poloxamer 407 and solulan C24. Particle size, EE %, polarized-light microscopy, TEM, in vitro release, transcorneal permeation, BCOP, histopathology and in vivo evaluation for treatment of uveitis in a rabbits' model were studied. RESULTS: The prepared cubosomes were of nano-sizes (100 nm - 278 nm); EE% was around 94%. The cubosomes were confirmed by visualizing the "Maltese crosses" textures. Transcorneal permeation was significantly (p < 0.05) improved, compared to BDP-suspension (the control formulation). The optimized cubosomes F1P was incorporated in CMC gel (Cubo-gel). The prepared Cubo-gel formulations showed better rheological characteristics and high ocular tolerability. Superior anti-inflammatory properties were recorded for the Cubo-gel for treatment of endotoxin-induced uveitis in the rabbit model when compared to the control BDP-suspension. CONCLUSIONS: Transcorneal permeation parameters Papp and flux and AUC0-10h markedly enhanced by up to 4-, 5.8-and 5.5-fold respectively, compared to the control BDP-suspension formulation. This study suggested that cubosomes/Cubo-gel could be an auspicious ocular delivery system for BDP that was able to effectively treat uveitis (a disease of the posterior segment of the eye).


Subject(s)
Beclomethasone/administration & dosage , Drug Carriers/pharmacology , Drug Compounding/methods , Uveitis/drug therapy , Administration, Topical , Animals , Biological Availability , Cattle , Drug Delivery Systems/methods , Eye/drug effects , Gels/pharmacology , Ocular Absorption , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...