Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049060

ABSTRACT

Ultrathin MoO3 semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic properties of MoO3/n-Si via an ALD system of few nanometers, we utilized the preparation of an ultrathin MoO3 film at temperatures of 100, 150, 200, and 250 °C. The effect of the depositing temperatures on using bis(tbutylimido)bis(dimethylamino)molybdenum (VI) as a molybdenum source for highly stable UV photodetectors were reported. The ON-OFF and the photodetector dynamic behaviors of these samples under different applied voltages of 0, 0.5, 1, 2, 3, 4, and 5 V were collected. This study shows that the ultrasmooth and homogenous films of less than a 0.30 nm roughness deposited at 200 °C were used efficiently for high-performance UV photodetector behaviors with a high sheet carrier concentration of 7.6 × 1010 cm-2 and external quantum efficiency of 1.72 × 1011. The electronic parameters were analyzed based on thermionic emission theory, where Cheung and Nord's methods were utilized to determine the photodetector electronic parameters, such as the ideality factor (n), barrier height (Φ0), and series resistance (Rs). The n-factor values were higher in the low voltage region of the I-V diagram, potentially due to series resistance causing a voltage drop across the interfacial thin film and charge accumulation at the interface states between the MoO3 and Si surfaces.

2.
Rev Sci Instrum ; 89(1): 015108, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29390727

ABSTRACT

The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.

SELECTION OF CITATIONS
SEARCH DETAIL
...