Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plants (Basel) ; 11(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35161248

ABSTRACT

The technology of hybrid rice utilizing heterosis is an essential requirement for achieving food security. The current study was aimed at assessing the genetic parameters and the gene actions of 15 yield-component traits associated with heterosis, in 9 new parental lines of hybrid rice and their generated hybrids. Five cytoplasmic male sterile (CMS) lines were crossed with four restorer (R) lines using twenty generated line × tester designation hybrid combinations. The results revealed that all the traits were controlled by additive and non-additive gene actions. However, the additive variance was the main component of the total genotypic variance. Assessment of the general combining ability (GCA) detected the best combiners among the genotypes. The hybrid combinations that expressed the highest-positive specific combining ability (SCA) for grain-yield were detected. The correlation between the GCA and SCA was evaluated. The hybrid crosses with high-positive heterosis, due to having a better parent for grain yield, were detected. The principal component analysis (PCA) recorded the first four principal axis displayed Eigenvalues >1 and existing variation cumulative of 83.92% in the genotypes for yield component characteristics. Three-dimensional plots corresponding to the studied traits illustrated that the genotypes Guang8A × Giza181, Quan-9311A × Giza179, II-32A × Giza181, and II-32A × Giza179 are classified as possessing superior grain yield.

2.
Plants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374424

ABSTRACT

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard's similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.

SELECTION OF CITATIONS
SEARCH DETAIL
...