Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Brain Cogn ; 174: 106106, 2024 02.
Article in English | MEDLINE | ID: mdl-38016399

ABSTRACT

Studies with individuals with developmental dyslexia (DD) have documented impaired perception of words and faces, both of which are domains of visual expertise for human adults. In this study, we examined a possible mechanism that might be associated with the impaired acquisition of visual expertise for words and faces in DD, namely, the atypical engagement of the monocular visual pathway. Participants with DD and typical readers (TR) judged whether a pair of sequentially presented unfamiliar faces or nonwords were the same or different, and the pair of stimuli were displayed in an eye-specific fashion using a stereoscope. Based on evidence of greater reliance on subcortical structures early in development, we predicted differences between the groups in the engagement of lower (monocular) versus higher (binocular) regions of the visual pathways. Whereas the TR group showed a monocular advantage for both stimulus types, the DD participants evinced a monocular advantage for faces and words that was much greater than that measured in the TRs. These findings indicate that the DD individuals have enhanced subcortical engagement and that this might arise from the failure to fine-tune cortical correlates mediating the discrimination of homogeneous exemplars in domains of expertise.


Subject(s)
Dyslexia , Visual Perception , Adult , Humans , Visual Pathways , Reading
2.
Commun Biol ; 6(1): 822, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553518

ABSTRACT

Humans are social creatures, demonstrate prosocial behaviors, and are sensitive to the actions and consequent payoff of others. This social sensitivity has also been found in many other species, though not in all. Research has suggested that prosocial tendencies are more pronounced in naturally cooperative species whose social structure requires a high level of interdependence and allomaternal care. The present study challenges this assumption by demonstrating, in a laboratory setting, that archerfish, competitive by nature, preferred targets rewarding both themselves and their tankmates, but only when the payoff was equal. With no tankmate on the other side of the partition, they exhibited no obvious preference. Finding evidence for prosocial behavior and negative responses to unequal distribution of reward to the advantage of the other fish suggests that in a competitive social environment, being prosocial may be the most adaptive strategy for personal survival, even if it benefits others as well.


Subject(s)
Altruism , Perciformes , Humans , Animals , Reward , Laboratories
3.
J Intell ; 11(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37367523

ABSTRACT

Researchers often attribute higher cognition to the enlargement of cortical regions throughout evolution, reflecting the belief that humans sit at the top of the cognitive pyramid. Implicitly, this approach assumes that the subcortex is of secondary importance for higher-order cognition. While it is now recognized that subcortical regions can be involved in various cognitive domains, it remains unclear how they contribute to computations essential for higher-level cognitive processes such as endogenous attention and numerical cognition. Herein, we identify three models of subcortical-cortical relations in these cognitive processes: (i) subcortical regions are not involved in higher cognition; (ii) subcortical computations support elemental forms of higher cognition mainly in species without a developed cortex; and (iii) higher cognition depends on a whole-brain dynamic network, requiring integrated cortical and subcortical computations. Based on evolutionary theories and recent data, we propose the SEED hypothesis: the Subcortex is Essential for the Early Development of higher cognition. According to the five principles of the SEED hypothesis, subcortical computations are essential for the emergence of cognitive abilities that enable organisms to adapt to an ever-changing environment. We examine the implications of the SEED hypothesis from a multidisciplinary perspective to understand how the subcortex contributes to various forms of higher cognition.

4.
Psychon Bull Rev ; 30(2): 575-584, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36279047

ABSTRACT

According to the prevailing view, cognitive processes of mental rotation are carried out by visuospatial perceptual circuits located primarily in high cortical areas. Here, we examined the functional involvement of (mostly subcortical) monocular channels in mental rotation tasks. Images of two rotated objects (0°, 50°, 100°, or 150°; identical or mirrored) were presented either to one eye (monocular) or segregated between the eyes (interocular). The results indicated a causal role for low monocular visual channels in mental rotation: Response times for identical ("same") objects at high angular disparities (100°, 150°) were shorter when both objects were presented to a single eye than when each object was presented to a different eye. We suggest that mental rotation processes rely on cortico-subcortical loops that support visuospatial perception. More generally, the findings highlight the potential contribution of lower-level mechanisms to what are typically considered to be high-level cognitive functions, such as mental representation.


Subject(s)
Cognition , Eye , Humans , Reaction Time/physiology
5.
Psychon Bull Rev ; 29(3): 809-818, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34918272

ABSTRACT

Studies examining the neural mechanisms of face perception in humans have mainly focused on cortical networks of face-selective regions. However, subcortical regions are known to play a significant role in face perception as well. For instance, upon presenting pairs of faces sequentially to the same eye or to different eyes, superior performance is observed in the former condition. This superiority was explained by monocular, pre-striate processing of face stimuli. One of the intriguing face-related effects is the face pareidolia phenomenon, wherein observers perceive faces in inanimate objects. In this study, we examined whether face pareidolia involves similar low-level neural substrates to those that are involved in face perception. We presented participants with pairs of houses or face-like houses using a stereoscope to manipulate the information presented to each eye and asked them to determine whether the stimuli were similar or different. We managed to examine the contribution of monocular channels (mostly subcortical) in processing face-like stimuli. We hypothesized that besides their involvement in actual face perception, subcortical structures are engaged in face pareidolia as well. To test our hypothesis, we conducted three experiments to replicate and strengthen the reliability of our results and rule out alternative explanations. We demonstrated a perceptual benefit when presenting similar face-like houses to the same eye in comparison to their presentation to different eyes. This finding matches previous results found for images of real faces and indicates subcortical involvement not only in face perception but also in processing face-like objects.


Subject(s)
Facial Recognition , Eye , Face , Humans , Photic Stimulation/methods , Reproducibility of Results , Visual Perception
6.
Sci Rep ; 11(1): 22795, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815496

ABSTRACT

Humans exhibit complex arithmetic skills, often attributed to our exceptionally large neocortex. However, the past decade has provided ample evidence that the functional domain of the subcortex extends well beyond basic functions. Using a sensitive behavioral method, for the first time, we explored the contributions of lower-order visual monocular channels to symbolic arithmetic operations, addition and subtraction. The pattern of results from 4 different experiments provides converging evidence for a causal relation between mental arithmetic and primitive subcortical regions. The results have major implications for our understanding of the neuroevolutionary development of general numerical abilities-subcortical regions, which are shared across different species, are essential to complex numerical operations. In a bigger conceptual framework, these findings and others call for a shift from the modal view of the exclusive role of the neocortex in high-level cognition to a view that emphasizes the interplay between subcortical and cortical brain networks.


Subject(s)
Brain/physiology , Cognition/physiology , Mathematics/statistics & numerical data , Neocortex/physiology , Visual Pathways/physiology , Adult , Female , Humans , Male , Young Adult
7.
Sci Rep ; 11(1): 15664, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341367

ABSTRACT

We make magnitude-related decisions every day, for example, to choose the shortest queue at the grocery store. When making such decisions, which magnitudes do we consider? The dominant theory suggests that our focus is on numerical quantity, i.e., the number of items in a set. This theory leads to quantity-focused research suggesting that discriminating quantities is automatic, innate, and is the basis for mathematical abilities in humans. Another theory suggests, instead, that non-numerical magnitudes, such as the total area of the compared items, are usually what humans rely on, and numerical quantity is used only when required. Since wild animals must make quick magnitude-related decisions to eat, seek shelter, survive, and procreate, studying which magnitudes animals spontaneously use in magnitude-related decisions is a good way to study the relative primacy of numerical quantity versus non-numerical magnitudes. We asked whether, in an animal model, the influence of non-numerical magnitudes on performance in a spontaneous magnitude comparison task is modulated by the number of non-numerical magnitudes that positively correlate with numerical quantity. Our animal model was the Archerfish, a fish that, in the wild, hunts insects by shooting a jet of water at them. These fish were trained to shoot water at artificial targets presented on a computer screen above the water tank. We tested the Archerfish's performance in spontaneous, untrained two-choice magnitude decisions. We found that the fish tended to select the group containing larger non-numerical magnitudes and smaller quantities of dots. The fish selected the group containing more dots mostly when the quantity of the dots was positively correlated with all five different non-numerical magnitudes. The current study adds to the body of studies providing direct evidence that in some cases animals' magnitude-related decisions are more affected by non-numerical magnitudes than by numerical quantity, putting doubt on the claims that numerical quantity perception is the most basic building block of mathematical abilities.

9.
Sci Rep ; 11(1): 8759, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888804

ABSTRACT

Scientific investigations have long emphasized the cortex's role in cognitive transfer and arithmetic abilities. To date, however, this assumption has not been thoroughly empirically investigated. Here we demonstrated that primitive mechanisms-lower visual channels-have a causal role in cognitive transfer of complex skills such as symbolic arithmetic. We found that exposing only one monocular channel to a visuospatial training resulted in a larger transfer effect in the trained monocular channel compared to the untrained monocular channel. Such cognitive transfer was found for both novel figural-spatial problems (near transfer) and novel subtraction problems (far transfer). Importantly, the benefits of the trained eye were not observed in old problems and in other tasks that did not involve visuospatial abilities (the Stroop task, a multiplication task). These results challenge the exclusive role of the cortex in cognitive transfer and complex arithmetic. In addition, the results suggest a new mechanism for the emergence of cognitive skills, that could be shared across different species.


Subject(s)
Cognition , Visual Pathways , Humans , Transfer, Psychology
10.
Cognition ; 207: 104511, 2021 02.
Article in English | MEDLINE | ID: mdl-33203585

ABSTRACT

Social cues such as gaze, head, and body orientation are essential for the survival of any social animal. The gaze cuing paradigm is a well-studied experimental manipulation, employed to detect automatic attentional shifts in humans. To the best of our knowledge, no previous study has tested non-primates in a paradigm that is similar to the one typically used on humans. Herein, three archerfish observed a conspecific picture oriented toward the right or the left, followed unpredictably by a visual target presented in the socially cued or un-cued location. Similar to the pattern observed in humans, fish demonstrated faster reaction times for targets presented at the socially cued location. Results suggest that social cues may have an early evolutionary origin and can elicit automatic attentional orienting even in species without a visual cortex.


Subject(s)
Attention , Cues , Animals , Fixation, Ocular , Humans , Orientation , Reaction Time
11.
Cognition ; 206: 104476, 2021 01.
Article in English | MEDLINE | ID: mdl-33186747

ABSTRACT

The present study examined the involvement of subcortical structures in the processing of global and local information. To this end, we used a stereoscope to present hierarchical stimuli (global shapes composed of local elements) in a dichoptic or a monocular fashion, such that global and local information was either presented to the same eye (same-eye condition) or segregated between the eyes (different-eyes condition). In Experiment 1, the typical global advantage and global-to-local interference were observed for the same-eye presentation condition. On the other hand, no indication of a global advantage or of global-to-local interference emerged in the different-eyes presentation condition. In Experiment 2 we replicated these results, ruling out a possible alternative explanation that the pattern of results observed for the different-eyes presentation condition resulted merely from segregation of the stimulus between the eyes. Rather, the experiment demonstrated that the global-to-local interference was eliminated only when global and local information was segregated between the eyes. Taken together, these findings suggest that processing the global aspect of hierarchical stimuli involves subcortical regions indexed by monocular portions of the visual system.

12.
Schizophr Res Cogn ; 22: 100185, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32714847

ABSTRACT

The literature has long emphasized the involvement of cortical and subcortical networks in executive function impairments among patients with schizophrenia. However, previous studies have not examined the relative involvement of monocular (mostly subcortical) versus binocular (mostly cortical) neural tracks in patients' EF deficits. Patients with schizophrenia and healthy comparisons were administered a dichotic version of the Stroop task, in which eye-of-origin manipulation was employed to isolate the involvement of monocular (mostly subcortical; thalamic regions) versus binocular (mostly cortical; extrastriate cortex) visual pathways. The eye-of-origin manipulation, in which a color patch (e.g., a green patch) was presented to one eye, and a word (e.g., "RED") to the other eye, enabled a split of the conflicting information between the two monocular channels. This results in the presentation of conflicting information to the higher cortical regions, but not to the lower subcortical structures. In the Stroop color task, when the monocular neural channels were not exposed to the conflicting information, the differences in task performance between the patients and the HCs significantly increased, and only the patients exhibited larger task conflict. When monocular neural channels were not exposed to the conflicting information, a robust dysfunction of the patients' group was observed. This abnormality might result from impairments in cortical regions or reduced computational power available for solving the conflict. However, additional studies that take into account the resolution of monocular and binocular neural channels are needed to enrich our understanding of the interplay between cortical and subcortical mechanisms in patients' EF deficits.

13.
Acta Psychol (Amst) ; 208: 103119, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32580036

ABSTRACT

Being part of a group is a crucial factor in human social interaction. In the current study we explored whether group membership affects reflexive automatic cognitive functioning, and specifically the social inhibition of return effect (SIOR; Welsh et al., 2005). SIOR is characterized by slower reaction times (RTs) to a location already searched by another agent. To examine whether group membership modulates SIOR, we recruited Muslim and Jewish students from the University of Haifa to perform a task with either an in-group member or an out-group member. Both IOR and SIOR were suggested to act as a foraging facilitator (Klein, 2000; Welsh et al., 2005). Accordingly, we predicted that the SIOR effect would be larger when performing the task with an in-group member than with an out-group member. The results confirmed our prediction by indicating that the co-actor's group membership modulated the SIOR effect. These findings are consistent with the notion that social factors play a critical role in producing the SIOR effect and provide a novel indication of the influence of social factors such as group membership on basic reflexive cognitive processes.


Subject(s)
Inhibition, Psychological , Interpersonal Relations , Humans , Reaction Time
14.
J Int Neuropsychol Soc ; 26(4): 407-417, 2020 04.
Article in English | MEDLINE | ID: mdl-32238215

ABSTRACT

An accumulating body of evidence highlights the contribution of general cognitive processes, such as attention, to language-related skills. OBJECTIVE: The purpose of the present study was to explore how interference control (a subcomponent of selective attention) is affected in developmental dyslexia (DD) by means of control over simple stimulus-response mappings. Furthermore, we aimed to examine interference control in adults with DD across sensory modalities. METHODS: The performance of 14 dyslexic adults and 14 matched controls was compared on visual/auditory Simon tasks, in which conflict was presented in terms of an incongruent mapping between the location of a visual/auditory stimulus and the appropriate motor response. RESULTS: In the auditory task, dyslexic participants exhibited larger Simon effect costs; namely, they showed disproportionately larger reaction times (RTs)/errors costs when the auditory stimulus and response were incongruent relative to RT/errors costs of non-impaired readers. In the visual Simon task, both groups presented Simon effect costs to the same extent. CONCLUSION: These results indicate that the ability to control auditory selective attention is carried out less effectively in those with DD compared with visually controlled processing. The implications of this impaired process for the language-related skills of individuals with DD are discussed.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Dyslexia/physiopathology , Executive Function/physiology , Inhibition, Psychological , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
15.
Cortex ; 122: 131-139, 2020 01.
Article in English | MEDLINE | ID: mdl-30638583

ABSTRACT

Based on findings showing that attention is captured by aversive stimuli, previous studies have hypothesized that inhibition of return (IOR) is reduced at spatial locations previously occupied by threat cues. Yet evidence for this view is limited: Only a few studies have demonstrated a reduced degree of IOR following threat cues, while most have not found differences in IOR between aversive and neutral cues. In contrast to previous studies that used the spatial cuing paradigm and for the most part employed mild negative stimuli as cues, we examined the influence of highly aversive, colored and complex pictures of real life situations. As opposed to the stimuli used in previous studies, these pictures are thought to result in enhanced processing as well as in specific enhancement for threat pictures in comparison to neutral ones. Based on evidence indicating that enhanced processing of spatial cues results in increased IOR, we hypothesized that the negative picture cues employed in the present study would yield increased IOR. This hypothesis was confirmed in two experiments. We suggest that the enhancement of IOR following highly threatening cues may be related to efficient spatial orienting of attention in response to stimuli that are important from an evolutionary point of view. The results are discussed in the context of neurocognitive mechanisms that may underlie the modulation of IOR by emotional information.


Subject(s)
Cues , Inhibition, Psychological , Attention , Humans , Reaction Time
16.
Atten Percept Psychophys ; 81(3): 752-763, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30628033

ABSTRACT

The literature has long emphasized the neocortex's role in the tangled phasic-alertness and temporal-expectancy processes. In this work, we examined whether subcortical, monocular mechanisms have a functional role in these processes. This was done by assessing phasic alertness and temporal expectancy independently using a cue-target eye-of-origin manipulation. Participants performed target detection tasks in which a central cue and its ensuing peripheral target were each presented either to the same eye or to a different eye. In Experiment 1, phasic alertness, independent of temporal expectancy, was manipulated by presenting an alerting cue prior to the target presentation. The alerting effect elicited by the cue lasted for a longer duration when the cue and target were presented to the same eye than when they were presented to different eyes, indicating the involvement of subcortical regions in phasic alertness. In Experiment 2, the cue's temporal predictability regarding the target's onset time was manipulated by changing the cue-target interval's foreperiod distribution. A modulation in temporal expectancy was found when both the cue and the target were presented to the same eye, demonstrating the importance of subcortical mechanisms in temporal expectancy. Together, the results demonstrate that monocular channels are functionally involved in both phasic alertness and temporal expectancy. This study suggests that both phasic alertness and temporal expectancy are functionally dependent on monocular channels of the visual stream, and highlights the importance of direct examination of primitive, subcortical regions in higher cognitive functioning (e.g., temporal expectancy).


Subject(s)
Arousal , Vision, Monocular , Visual Perception , Cues , Female , Humans , Male , Photic Stimulation , Time Factors , Uncertainty , Young Adult
17.
Neuropsychologia ; 111: 1-7, 2018 03.
Article in English | MEDLINE | ID: mdl-29317323

ABSTRACT

The literature has long emphasized the role of higher cortical structures in endogenous orienting. Based on evolutionary explanation and previous data, we explored the possibility that lower monocular channels may also have a functional role in endogenous orienting of attention. Sensitive behavioral manipulation was used to probe the contribution of monocularly segregated regions in a simple cue - target detection task. A central spatially informative cue, and its ensuing target, were presented to the same or different eyes at varying cue-target intervals. Results indicated that the onset of endogenous orienting was apparent earlier when the cue and target were presented to the same eye. The data provides converging evidence for the notion that endogenous facilitation is modulated by monocular portions of the visual stream. This, in turn, suggests that higher cortical mechanisms are not exclusively responsible for endogenous orienting, and that a dynamic interaction between higher and lower neural levels, might be involved.


Subject(s)
Attention , Orientation , Vision, Monocular , Cues , Female , Humans , Male , Photic Stimulation , Psychophysics , Reaction Time , Visual Perception , Young Adult
18.
Atten Percept Psychophys ; 80(3): 669-676, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29322317

ABSTRACT

Human volitional orienting is typically assessed using Posner's endogenous cuing task. As a volitional process, the literature has long emphasized the role of neocortical structures in this higher cognitive function. Based on recent data, we explored the possibility that subcortical channels may have a functional role in volitional orienting as measured by a Posner cuing task in which a nonspatial feature of a centrally presented cue is predictively related to the location of the target. In addition, we have compared this typical cuing task to a "purer" version, which does not involve the probability manipulation. A sensitive behavioral method was used to probe the contribution of monocular channels (mostly subcortical) in the two types of endogenous orienting tasks. In both tasks, a spatially informative cue and its ensuing target were presented to the same or different eyes at varying cue-target intervals. In the typically used endogenous task, the onset of facilitation was apparent earlier when the cue and target were presented to the same eye. In contrast, in the "pure" task no difference was found between the two eye-of-origin conditions. These data support the notion that endogenous facilitation, as measured in the typical Posner cuing task, involves lower monocular regions. Hence, in the typical endogenous task, which was developed to explore "volitional" orienting, a simple associative learning mechanism might elicit monocular, rapid orienting responses. Notably, the typical volitional orienting paradigm might be contaminated by simple contingency benefits and thus may not provide a pure measure of volitional processes.


Subject(s)
Orientation/physiology , Volition/physiology , Cerebral Cortex/physiology , Cues , Female , Humans , Male , Probability Learning , Task Performance and Analysis
19.
Acta Psychol (Amst) ; 189: 36-42, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28291524

ABSTRACT

The literature has long emphasized the role of the cerebral cortex in executive functions. Recently, however, several researchers have suggested that subcortical areas might also be involved in executive functions. The current study explored the possibility that subcortical mechanisms have a functional role in adaptive resolution of Stroop interference. We asked 20 participants to complete a cued task-switching Stroop task with variable cue-target intervals (CTI). Using a stereoscope, we manipulated which eye was shown the relevant dimension and which was shown the irrelevant dimension. This technique allowed us to examine the involvement of monocularly segregated - subcortical - regions of the visual processing stream. The interference effect was modulated by this eye-of-origin manipulation in the 0 CTI condition. This finding provides a novel indication for the notion that subcortical regions have a functional role in the resolution of Stroop interference. This indication suggests that cortical regions are not solely involved and that a dynamic interaction between cortical and subcortical regions is involved in executive functions.


Subject(s)
Cerebral Cortex/physiology , Cues , Executive Function/physiology , Stroop Test , Adult , Female , Humans , Male , Young Adult
20.
Proc Natl Acad Sci U S A ; 114(29): 7577-7581, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673997

ABSTRACT

The literature has long emphasized the neocortex's role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner's classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like "volitional" facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans.


Subject(s)
Fishes/physiology , Orientation , Reaction Time , Animals , Attention , Behavior, Animal , Inhibition, Psychological , Learning , Neocortex/physiology , Pattern Recognition, Visual , Space Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...